Acta Biologica Hungarica

, Volume 61, Issue 3, pp 313–321 | Cite as

High Frequency Plant Regeneration from Mature Seed of Elite, Recalcitrant Malaysian Indica Rice (Oryza Sativa L.) CV. MR 219

  • P. Sivakumar
  • Y. S. Law
  • C.-L. Ho
  • Jennifer Ann HarikrishnaEmail author


An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg 1-1 2,4-dichlorophenoxy acetic acid, 0.2 mg 1-1 kinetin, 2.5 mg l-1 L-proline, 300 mg l-1 casein hydrolysate, 20 mg l-1 L-glutamine and 30 g l-1 sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l-1 6-benzyl aminopu-rine, l mg l-1 naphthalene acetic acid, 2.5 mg l-1 L-proline, 300 mg l-1 casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement.


Callus induction Oryza sativa ssp. indica mature seeds plant regeneration recalcitrant 



2,4-dichlorophenoxyacetic acid


6-benzylamino purine


casein hydrolysate






Murashige and Skoog medium


Naphtha-leneacetic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajaj, S., Mohanty, A. (2005) Recent advances in rice biotechnology - towards genetically superior transgenic rice. Plant Biotechnol. 3, 275–307.CrossRefGoogle Scholar
  2. 2.
    Carsono, N., Yoshida, T. (2006) Plant regeneration capacity of calluses derived from mature seed of five indonesian rice genotypes. Plant Prod Sci. 9, 71–77.CrossRefGoogle Scholar
  3. 3.
    Chair, H., Legavre, T., Guiderdoni, E. (1996) Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.). Plant Cell Rep. 15, 766–770.CrossRefGoogle Scholar
  4. 4.
    Christou, P., Ford, T. L., Kofron, M. (1992) The development of a variety-independent gene transfer method for rice. Trends Biotechnol. 10, 239–246.CrossRefGoogle Scholar
  5. 5.
    Chu, C. C., Wang, C. C., Sun, C. S., Hsu, K. C., Yen, K. C., Chu, C. Y., Bi, F. Y (1975) Establishment of an efficient medium for anther culture of rice through comparative experimentation on the nitrogen source. Sci. Sínica. 13, 659–668.Google Scholar
  6. 6.
    Duncan, D. B. (1955) Multiple range and multiple F test. Biometrics 11, 1–42.CrossRefGoogle Scholar
  7. 7.
    Feng, L., Wang, K., Li, Y., Tang, Y., Kong, J., Li, H., Li, Y., Zhu, Y (2007) Overexpression of SBpase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep. 26, 1635–1646.CrossRefGoogle Scholar
  8. 8.
    Han, L., Liu, P., Wu, K., Peng, Y., Wang, F. (2008) Population dynamics of Sesamia inferens on transgenic rice expressing CrylAc and CpTI in southern china. Environ. Entomol. 37, 1361–1370.CrossRefGoogle Scholar
  9. 9.
    Hare, P. D., Cress W. A. (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul. 21, 79–102.CrossRefGoogle Scholar
  10. 10.
    Hiei, Y., Ohta, S., Komari, T., Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.CrossRefGoogle Scholar
  11. 11.
    Hoque, M. E., Ali, M. S., Karim, N H. (2007) Embryogenic callus induction and regeneration of elite Bagnaladeshi indica rice cultivars. Plant Tissue Cult. Biotech. 17, 6–7.Google Scholar
  12. 12.
    Jain, R. K., Jain, B., Wang, B., Wu, R. (1996) Optimization of Holistic method for transient gene expression and production of agronomically useful basmati rice plants. Plant Cell Rep. 15, 963–968.CrossRefGoogle Scholar
  13. 13.
    Jeong, J., Guerinot M. L. (2008) Biofortified and bioavailable: The gold standard for plant-based diets. Proc. Natl. Acad. Sci. USA 105, 1777–1778.CrossRefGoogle Scholar
  14. 14.
    Kumar, K., Maruthasalam, S., Loganathan, M., Sudhakar, D., Balasubramanian, P. (2005) An improved Agrobacterium-mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Mol. Biol. Rep. 23, 67–73.CrossRefGoogle Scholar
  15. 15.
    Kumaria, R., Rajam, M.V. (2002) Alteration in polyamine titres during Agrobactrium mediated transformation of indica rice with ornithine decarboxylase gene affects plant regeneration potential. Plant Sci. 162, 769–777.CrossRefGoogle Scholar
  16. 16.
    Maruthasalam, S., Kalpana, K., Kumar, K. K., Loganathan, M., Poovannan, M., Raja J. A. J., Kokiladevi, E., Samiyappan, R., Sudhakar, D., Balasubramanian, P. (2007) Pyramiding transgenic resistance in elite indica rice cultivars against sheath blight and bacterial blight. Plant Cell Rep. 26, 791–804.CrossRefGoogle Scholar
  17. 17.
    Moura, D. S., Zapatarias, F. J., Ando, A., Neto A. T. (1997) Plant regeneration from protoplasts isolated from primary calli using mature embryos of two Brazilian rice cultivars. Euphytica 94, 1–5.CrossRefGoogle Scholar
  18. 18.
    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 39, 375–383.Google Scholar
  19. 19.
    Nanjo, T., Kobayashi, M., Yoshida, Y., Sanda, Y., Wada, K., Tsukaya, H., Kakubari, Y., Aamaguchi-Shinonaki, K., Shinozaki, K. (1999) Biological functions of proline morphogenesis and osmotoler-ance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18, 185–193.CrossRefGoogle Scholar
  20. 20.
    Niroula, R. K., Sah, B. P., Bimb, H. P., Nayak, S. (2005) Effect of genotype and culture media on callus induction and plant regeneration from matured rice grain culture. Inst. Agric. Anim. Sci. 26, 21–26.CrossRefGoogle Scholar
  21. 21.
    Park, S. H., Pinson S. R. M., Smith R. H. (1996) T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol. 32, 1135–1148.CrossRefGoogle Scholar
  22. 22.
    Rajesh, S., Krishnaveni, S., Sudhakar, D., Raveendran, M., Sivakumar, P., Gnanam, R., Manickam, A. (2008) Agrobacterium-mediated transformation of indica rice (Oryza sativa L.), IR64 with Mungbean LEA protein gene for water-stress tolerance American J. Plant Physiol. 3, 101–110.Google Scholar
  23. 23.
    Rashid, H., Saleem, M., Chaudhry, Z., Gilani, S. T., Quresi A. S. (2004) Studies on developing a high regeneration from seed derived calli of rice (Oryza sativa L.) CV. Super Basmati. Pak. J. Biol. Sci. 7, 273–276.CrossRefGoogle Scholar
  24. 24.
    Sakamoto, T. (2006) Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgenic Res. 15, 399–404.CrossRefGoogle Scholar
  25. 25.
    Tariq, M., Ali, G., Hadi, F., Ahmad, S., Ali, N., Shah A. A. (2008) Callus induction and in vitro plant regeneration of rice (Oryza Sativa L.) under various conditions. Pak. J. Biol. Sci. 11, 255–259.CrossRefGoogle Scholar
  26. 26.
    Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S., Tanaka, H. (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant J. 4, 969–976.CrossRefGoogle Scholar
  27. 27.
    Wang, M. S., Zapata, F. J., De Castro, D. C. (1987) Plant regeneration through somtic embryogenesis from mature seed and young inflorescence of wild rice (Oryza perennis Moench). Plant Cell Rep. 6, 294–296.CrossRefGoogle Scholar
  28. 28.
    Warthmann, N., Chen, H., Ossowski, S., Weigel, D., Herve, P. (2008) Highly specific gene silencing by artificial miRNAs in Rice. PLoS One 3, el829.CrossRefGoogle Scholar
  29. 29.
    Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., Toriyama, K. (2008) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKYll under the control of HSP101 promoter. Plant Cell Rep. 28, 21–30.CrossRefGoogle Scholar
  30. 30.
    Zaidi, M. A., Narayanan, M., Sardana, R., Taga, I., Postei, S., Johns, R., Mcnutly, M., Mottiar, Y., Mao, J., Loit, E., Altosaar, T. (2006) Optimizing tissue culture media for efficient transformation of different rice genotypes. Agronomy Res. 4, 563–567.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Sivakumar
    • 1
  • Y. S. Law
    • 1
  • C.-L. Ho
    • 2
  • Jennifer Ann Harikrishna
    • 1
    Email author
  1. 1.Centre for Research in Biotechnology for Agriculture (CEBAR) and Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular SciencesUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations