Advertisement

Acta Biologica Hungarica

, Volume 61, Issue 2, pp 204–213 | Cite as

Physiological Responses of Arabidopsis thaliana to the Interaction of Iron Deficiency and Nitrogen Form

  • Najoua Karray-Bouraoui
  • Houneida AttiaEmail author
  • Manel Maghzaoui
  • Najoua Msilini
  • M. Rabhi
  • M. Lachaâl
Article

Abstract

Physiological responses of Arabidopsis thaliana to the interaction of iron deficiency and nitrogen form were studied using plants grown in hydroponics. Thirty-three-day-old seedlings were submitted to four treatments for 7 days : NO3 + 5 μM Fe; NO3 + 0.1 μM Fe; NH4+5 μM Fe and NH4 + 0.1 μM Fe. Leaf growth and chlorophyll content were highest in NO3-fed, Fe sufficient plants, but were strongly diminished by Fe deficiency under nitric nutrition, and by ammoniacal nutrition independently of Fe regime. However, the leaves of NH4-fed plants presented a higher Fe content than those of Fe sufficient, NO3-fed plants. Thus, leaf chlorosis of NH4-fed in plant did not depend on Fe availability, and seemed to be due to another factor. Root acidification capacity and Fe-chelate reductase (FCR) activity were also dependent on N form. The medium was acidified under ammoniacal regime and alkalinized under nitric regime regardless of Fe level. FCR activity stimulation in response to Fe deficiency was observed only in NO3-fed plants. In addition, both N form and Fe level induced antioxidant responses in rosette leaves. Ammoniacal regime increased both peroxidase expression and anthocyanin accumulation, whereas Fe deficiency enhanced superoxide dismutase expression.

Keywords

Arabidopsis thaliana iron nutrition ammonium nitrate nitrogen form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

Authors are indebted to Professor C. Grignon for stimulating discussions on this work.

References

  1. 1.
    Arnon, D. I., Hoagland, D. R. (1940) Crops production in artificial solution and in soils with special reference to factors affecting yields and absorption of inorganic nutrients. Soil Sci. 50, 463–484.Google Scholar
  2. 2.
    Attia, H., Arnaud, N., Karray, N., Lachaal, M. (2008) Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol. Plant. 132, 293–305.CrossRefGoogle Scholar
  3. 3.
    Barhoumi, Z., Rabhi, M., Gharsalli, M. (2007) Effect of two nitrogen forms on the growth and iron nutrition of pea cultivated in presence of bicarbonate. J. Plant. Nutr. 30, 1953–1965.CrossRefGoogle Scholar
  4. 4.
    Bradford, M. M. (1976) Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  5. 5.
    Chaney, R. L., Brown, J. C., Tiffin, L. O. (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant. Physiol. 50, 208–213.CrossRefGoogle Scholar
  6. 6.
    Connolly, E. L., Campbell, N., Grotz, N., Prichard, C. L., Guerinot, M. L. (2003) Overexpression of the FR02 iron reductase confers tolerance to growth on low iron and uncovers post-transcriptional control. Plant. Physiol. 133, 102–111.CrossRefGoogle Scholar
  7. 7.
    Fageria, V. D. (2001) Nutrient interactions in crop plants. J. Plant. Nutr. 24, 1269–1290.CrossRefGoogle Scholar
  8. 8.
    Gay, A. P., Hauck, B. (1994) Acclimation of Lolium temulentum to enhanced carbon dioxide concentration. J. Exp. Bot. 45, 1133–1141.CrossRefGoogle Scholar
  9. 9.
    Gogorcena, Y., Abadia, J., Abadia, A. (2000) Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock. J. Plant. Nutr. 23, 9–21.CrossRefGoogle Scholar
  10. 10.
    Kaytal, J. C., Sharma, B. D. (1980) A new technique of plant analysis to resolve iron chlorosis. Plant Soil. 55, 105–119.CrossRefGoogle Scholar
  11. 11.
    Kliebenstein, D. J., Monde, R. A., Last, R. L. (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 118, 637–650.CrossRefGoogle Scholar
  12. 12.
    Kosegarten, H., Englisch, G. (1994) Effect of various nitrogen forms on the pH in leaf apoplast and on iron chlorosis of Glycine max L. Z. Pflanzenernahr. 157, 401–405.CrossRefGoogle Scholar
  13. 13.
    Lindsay, W. L. (1984) Soil and plant relationships associated with iron deficiency with emphasis on nutrient interactions. J. Plant. Nutr. 7, 489–500.CrossRefGoogle Scholar
  14. 14.
    Marschner, H. (1997) Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, London.Google Scholar
  15. 15.
    Mengel, K., Plänker, R., Hoffman, B. (1994) Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annus L.). J. Plant. Nutr. 17, 1053–1065.CrossRefGoogle Scholar
  16. 16.
    Miller, G., Shulaev, V. Mittler, R. (2008) Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133, 481–489.CrossRefGoogle Scholar
  17. 17.
    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant. Sci. 7, 405–410.CrossRefGoogle Scholar
  18. 18.
    Murray, J. R., Hackett, W. P. (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase (Hedera helix L). Plant. Physiol. 97, 343–351.CrossRefGoogle Scholar
  19. 19.
    Natasha, G., Guerinot, M. L. (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763, 595–608.CrossRefGoogle Scholar
  20. 20.
    Nenova, V., Stoyanov, I. (1995) Physiological and biochemical changes in young maize plants under iron deficiency. II. Catalase, peroxidase and nitrate reductase activity in leaves. J. Plant Nutr. 10, 2081–2091.CrossRefGoogle Scholar
  21. 21.
    Nikolic, M., Kastori, R. (2000) Effect of bicarbonate and Fe supply on Fe nutrition of grapevine. J. Plant. Nutr. 23, 1619–1627.CrossRefGoogle Scholar
  22. 22.
    Poonnachit, U., Darnell, R. (2004) Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species. Ann. Bot. 93, 399–405.CrossRefGoogle Scholar
  23. 23.
    Rabhi, M., Barhoumi, Z., Ksouri, K., Abdelly, C., Gharsalli, M. (2007) Interactive effects of salinity and iron deficiency in Medicago ciliaris. C.R. Biol. 330, 779–788.CrossRefGoogle Scholar
  24. 24.
    Ranieri, A., Castagna, A., Baldan, B., Soldatini, G. F. (2001) Iron deficiency differently affects peroxidase isoforms in sunflower. J. Exp. Bot. 52, 25–35.CrossRefGoogle Scholar
  25. 25.
    Rivero, R., Sanshez, M. E., Ruiz, J. M., Romero, L. (2003) Iron metabolism in tomato and watermelon plants: Influence of nitrogen source. J. Plant. Nutr. 26, 2413–2424.CrossRefGoogle Scholar
  26. 26.
    Robinson, N. J., Proctor, C. M., Connolly, E. L., Guerinot, M. L. (1999) A ferricchelate reductase for iron uptake from soils. Nature 397, 694–697.CrossRefGoogle Scholar
  27. 27.
    Römheld, V. (1987) Different strategies for iron acquisition in higher plants. Physiol. Plant. 70, 231–234.CrossRefGoogle Scholar
  28. 28.
    Santamaria, P., Elia, A., Parente, A., Serio, F. (1998) Fertilization strategies for lowering nitrate content in leafy vegetables: chicory and rocket salad cases. J. Plant. Nutr. 21, 1791–1803.CrossRefGoogle Scholar
  29. 29.
    Torrecillas, A., Leon, A., Del Amor, F., Martinez-Mompean, M. C. (1984) Determinacion rapida de clorofila en discos foliares de limonero. Fruits 39, 617–622.Google Scholar
  30. 30.
    Touraine, B., Daniel-Vedele, F., Forde, B. G. (2001) Nitrate uptake and its regulation. In: Lea, P. J., Morot-Gaudry, J.-F. (eds) Plant Nitrogen. Springer-Verlag, Berlin, pp. 1–36.Google Scholar
  31. 31.
    Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., Curie, C. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14, 1223–1233.CrossRefGoogle Scholar
  32. 32.
    Von Wiren, N., Gojon, A., Chaillou, S., Raper, D. (2001) Mechanisms and regulation of ammonium uptake in higher plants. In: Lea, P. J., Morot-Gaudry, J.-F. (eds) Plant Nitrogen. Springer-Verlag, Berlin, pp. 61–77.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Najoua Karray-Bouraoui
    • 1
  • Houneida Attia
    • 1
    Email author
  • Manel Maghzaoui
    • 1
  • Najoua Msilini
    • 1
  • M. Rabhi
    • 2
  • M. Lachaâl
    • 1
  1. 1.Physiology and Biochemistry of the Salt Tolerance of Plants, Faculty of Sciences of TunisCampus UniversitaireTunis El ManarTunisia
  2. 2.Laboratory of Adaptation of Plants to Abiotic StressCenter of Biotechnology Technopole of Borj CédriaHammam-lifTunisia

Personalised recommendations