Advertisement

Acta Biologica Hungarica

, Volume 61, Issue 2, pp 158–167 | Cite as

Effect of ELF-EMF on Number of Apoptotic Cells; Correlation with Reactive Oxygen Species and HSP

  • Ayse Inhan GaripEmail author
  • Z. Akan
Article

Abstract

It is by now accepted that extremely low frequency electromagnetic fields ELF-EMF (0–300 Hz) affect biological systems although the mechanism has not been elucidated yet. In this study the effect of ELF-EMF on the number of apoptotic cells of K562 human leukemia cell line induced or not with oxidative stress and the correlation with heat-shock protein 70 (hsp70) levels was investigated. One sample was treated with H2O2 while the other was left untreated. ELF-EMF (1 mT, 50 Hz) was applied for 3 hours. ELF-EMF alone caused a decrease in the number of apoptotic cells and a slight increase in viability. However, it increased the number of apoptotic cells. In cells treated with H2O2. hsp70 and reactive oxygen species (ROS) levels were increased by ELF-EMF. These results show that the effect of ELF-EMF on biological systems depends on the status of the cell: while in cells not exposed to oxidative stress it is able to decrease the number of apoptotic cells by inducing an increase in hsp levels, it increases the number of apoptotic cells in oxidative stress-induced cells.

Keywords

Extremely low electromagnetic fields (ELF-EMF) apoptotic cells heat-shock protein70 oxidative-stress K562 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beere, H. M., Green, D. R. (2001) Stress management - heat shock protein-70 and the regulation of apoptosis. Trends Cell. Biol. 11, 6–10.CrossRefGoogle Scholar
  2. 2.
    Brocklehurst, B., McLauchlan, J. A. (1996) Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int. J. Rackat. Biol. 69, 3–24.CrossRefGoogle Scholar
  3. 3.
    Carmody, S., Wu, X. L., Blank, H., Skopicki, R., Goodman, R. (2000) Cytoprotection by electromagnetic field-induced hsp70: a model for clinical application. J. Cell. Biochem. 79, 453–459.CrossRefGoogle Scholar
  4. 4.
    Chamond, R. R., Anon, J. C., Guerra Pasadas C. M. A. (1999) Apoptosis and disease. Alergol Immunol. Clin. 14, 367–374.Google Scholar
  5. 5.
    Creagh, E. M., Sheehan, D., Cotter, T. G. (2000) Heat shock proteins - modulators of apoptosis in tumour cells. Leukemia 14, 1161–1173.CrossRefGoogle Scholar
  6. 6.
    De Nicola, M., Cordisco, S., Ceralla, C., Albertini, M. C., D’Alessio, M., Accorsi, A., Bergamaschi, A., Magrini, A., Ghibelli, L. (2006) Magnetic fields protect from apoptosis via redox alteration. Ann N.Y.Acad. Sci. 1090, 59–68.CrossRefGoogle Scholar
  7. 7.
    Falone, S., Grossi, M. R., Cinque, B., D’Angelo, B., Tettamanti, E., Cimini, A., Di Ilio, C., Amicarelli, F. (2007) Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and dif-ferentiative status in neuroblastoma cells. Int. J. Biochem. Cell. Biol. 39, 2093–2106.CrossRefGoogle Scholar
  8. 8.
    Garrido, C., Gurbuxani, S., Ravagnan, L., Kroemer, G. (2001) Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochem. Biophys. Res. Comm. 286, 433–442.CrossRefGoogle Scholar
  9. 9.
    Garrido, C., Solary, E. (2003) A role of HSPs in apoptosis through “protein triage”? Cell Death and Differentiation 10, 619–620.CrossRefGoogle Scholar
  10. 10.
    Goodman, R., Blank, M., Lin, H., Dai, R., Khorkava, O., Soo, L., Weisbrot, D., Henderson, A. (1994) Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 33, 115–120.CrossRefGoogle Scholar
  11. 11.
    Goodman, R., Lin, H., Blank, M. (1999) The mechanism of magnetic field stimulation of the stress response is similar to other environmental stresses. In Bersani, F. (ed.) Electricity and Magnetism in Biology. Kluwer Academic, Plenum Press, New York, pp. 179–182.CrossRefGoogle Scholar
  12. 12.
    Guo, S., Wharton, W., Moseley, P., Shi, H. (2007) Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress & Chaperones 12, 245–254.CrossRefGoogle Scholar
  13. 13.
    Gutzeit, H. O. (2001) Interaction of stressors and the limits of cellular homeostasis. Biochem Biophys. Res. Comm. 283, 721–725.CrossRefGoogle Scholar
  14. 14.
    IARC - International Agency for Research on Cancer (2002) Non-Ionizing Radiation, Part 1: Static and Extremely-Low Frequency (ELF) Electric and Magnetic Fields. Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 80.Google Scholar
  15. 15.
    Jolly, C., Morimoto, R. I. (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92, 1564–1572.CrossRefGoogle Scholar
  16. 16.
    Lacy-Hulbert, A., Metcalfe, J. C., Hesketh, R. (1998) Biological responses to electromagnetic fields. FASEB J. 12, 395–342.CrossRefGoogle Scholar
  17. 17.
    Liu, M. J., Wang, Z., Ju, Y., Wong, R. N., Wu, Q. Y. (2005) Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother. Pharmacol. 55, 79–90.CrossRefGoogle Scholar
  18. 18.
    Lupke, M., Rollwitz, J., Simko, M. (2004) Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells. Free Radic. Res. 38, 985–993.CrossRefGoogle Scholar
  19. 19.
    Morimoto, R. I. (1991) Heat shock: the role of transient inducible responses in cell damage, transformation and differentiation. Cancer Cells 3, 295–301.PubMedGoogle Scholar
  20. 20.
    National Institute of Environmental Health Sciences. Working Group Report. (1998) Assessment of Health Effects from Exposure to Power-line Frequency Electric and Magnetic Fields. Portier, C. J. and Wolfe, M. S., (eds) U.S. National Institute of Health, NIEH Publication No. 98-3981.Google Scholar
  21. 21.
    Nie, K., Micic-Vasovic, A., Henderson, A. S. (2003) Molecular and cellular response to EMF exposure; a review of studies of EMF and the relationship to signal transduction. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields. Springer-Verlag, Berlin, pp. 477–493.Google Scholar
  22. 22.
    Nordenson, I., Mild, K. H., Andersson, G., Sandstrom, M. (1994) Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty hertz magnetic fields. Bioelectromagnetics 15, 293–301.CrossRefGoogle Scholar
  23. 23.
    Santora, N., Lisi, A., Pozzi, D., Pasquali, E., Serafino, A., Grimaldi, S. (1997) Effect of extremely low frequency magnetic field exposure on morphological and biophysical properties of human lymphoid cell line Raji. Biochim. Biophys. Acta 1357, 281–290.CrossRefGoogle Scholar
  24. 24.
    Schaffer, F. Q., Buettner, R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rod. Biol Med. 30, 1191–1212.CrossRefGoogle Scholar
  25. 25.
    Simko, M. (2004) Induction of cell activation processes by low frequency electromagnetic fields. The Scientific World Journal 4(S2), 4–22.CrossRefGoogle Scholar
  26. 26.
    Sorensen, M., Autrup, H., Moller, P., Hertel, O., Jensen, S. S., Vinzents, P., Knudsen, L. E., Loft, S. (2003) Linking exposure to environmental pollutants with biological effects. Mutation Research 544. 255–271.CrossRefGoogle Scholar
  27. 27.
    Tokalov, S. V., Pieck, S., Gutzeit, H. O. (2003) Comparison of the reactions to stress produced by X-rays or electromagnetic fields (50 Hz) and heat: induction of heat shock genes and cell cycle effects in human cells. J. Appl. Biomed. 1, 85–92.CrossRefGoogle Scholar
  28. 28.
    Tokalov, S. V., Gutzeit, H. O. (2004) Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. Environ Res. 94, 145–151.CrossRefGoogle Scholar
  29. 29.
    Tonini, R., Baroni, M. D., Masala, E., Micheletti, M., Ferroni, A., Mazzanti, M. (2001) Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation. Biophys. J. 81, 2580–2589.CrossRefGoogle Scholar
  30. 30.
    Valko, M., Leibfritz, D., Moncola, J., Cronin, M. T. D., Mazura, M., Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84.CrossRefGoogle Scholar
  31. 31.
    Walleczek, J. (1992) Electromagnetic field effects on cells of the immune system: the role of calcium signalling. FASEB J. 6, 3177–3185.CrossRefGoogle Scholar
  32. 32.
    Wolf, F., Torsello, A., Tedesco, B., Fasanella, S., Boninsegna, A., D’Ascenzo, M., Grassi, C., Azzena, G. B., Cittadini, A. (2005) 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism. Biochimica et Biophysica Acta 1743, 120–129.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of BiophysicsMarmara University School of MedicineIstanbulTurkey

Personalised recommendations