Advertisement

Acta Biologica Hungarica

, Volume 61, Issue 1, pp 10–23 | Cite as

Expressions of Heat Shock and Metallothionein Genes in the Heart of Common Carp (Cyprinus Carpio): Effects of Temperature Shock and Heavy Metal Exposure

  • K. Said Ali
  • Ágnes Ferencz
  • J. Nemcsók
  • Edit HermeszEmail author
Article

Abstract

Heat shock proteins (HSPs) and metallothioneins (MTs) play important roles in protection against environmental stressors. The present study analyzes and compares the regulation of heat shock (hsp70, hsc70-1 and hsp90α) and metallothionein (MT-1 and MT-2) genes in the heart of common carp, in response to elevated temperature, cold shock and exposure to several heavy metal ions (As3+, Cd2+ and Cu2+), in whole-animal experiments. Among these metals, arsenate proved to be the most potent inducer of the examined stress genes; the hsp90α and MT-1 mRNA levels were elevated 11- and 10-fold, respectively, after a 24-h exposure. In contrast, Cd2+ at 10 mg/L had no impact on the expression of hsp90α, and the MT genes also proved to be rather insensitive to Cd2+ treatment in the heart: only a 2-2.5-fold induction was observed in response to 10 mg/L Cd2+. Heat shock resulted in a transient induction of hsp70 (19-fold) and hsp90α (15-fold), while elevated temperature had no effect on the expression of the MTs. Direct cold shock induced hsp70 expression (14-fold), while the hsp90α (26-fold) and MT-2 (2-fold) expressions peaked after the recovery period following a direct cold shock. The five stress genes examined in this study exhibited a unique, tissue-specific basal expression pattern and a characteristic sensitivity to metal treatments and temperature shocks.

Keywords

Carp heart heat shock heavy metal metallothionein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, K. S., Dorgai, L., Abraham, M., Hermesz, E. (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem. Biophys. Research Com. 307, 503–509.CrossRefGoogle Scholar
  2. 2.
    Cho, Y. S., Le, S. Y., Kim, K. Y., Bang, I. C., Kim, D. S., Nam, Y. K. (2008) Gene structure and expression of metallothionein during metal exposures in Hemibarbus mylodon. Ecotoxicol. Environ. 71, 125–137.CrossRefGoogle Scholar
  3. 3.
    Cullen, K. E., Sarge, K. D. (1997) Characterization of hypothermia induced cellular stress response in mouse tissues. J. Biol. Chem. 272, 1742–1746.CrossRefGoogle Scholar
  4. 4.
    Csermely, P., Schnaider, T., Sőti, C., Prohászka, Z., Nardai, G. (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther 79, 129–168.CrossRefGoogle Scholar
  5. 5.
    De Boeck, G., Ngo, T. T., Van Campenhout, K., Blust, R. (2003) Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquat. Toxicol. 65, 413–424.CrossRefGoogle Scholar
  6. 6.
    Delogu, G., Signore, M., Mechelli, A., Famularo, G. (2002) Heat shock proteins and their role in heart injury. Curr Opin. Crit. Care 8, 411–416.CrossRefGoogle Scholar
  7. 7.
    Eller-Jessen, K., Crivello, J. F. (1998) Subcutaneous NaAs3+ exposure increases metallothionein mRNA and protein expression in juvenile winter flounder. Aquat. Toxicol. 42, 301–320.CrossRefGoogle Scholar
  8. 8.
    Feng, W., Benz, F. W., Cai, J., Pierce, W. M., Kang, Y. J. (2006) Metallothionein disulfides are present in metallothionein-overexpressing transgenic mouse heart and increase under conditions of oxidative stress. J. Biol. Chem. 281, 681–687.CrossRefGoogle Scholar
  9. 9.
    Fujikake, N., Nagai, Y., Popiel, H. A., Kano, H., Yamaguchi, M., Toda, T. (2005) Alternative splicing regulates the transcriptional activity of Drosophila heat shock transcription factor in response to heat/cold stress. FEBS Lett. 579, 3842–3848.CrossRefGoogle Scholar
  10. 10.
    Gao, D., Wang, G. T., Chen, X. T., Nie, P. (2009) Metallothionein-2 gene from the mandarin fish Siniperca chuatsi: cDNA cloning, tissue expression, and immunohistochemical localization. Comp. Biochem. Phys. C. 149, 18–25.Google Scholar
  11. 11.
    Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–579.CrossRefGoogle Scholar
  12. 12.
    Hermesz, E., Ábrahám, M., Nemcsók, J. (2001) Tissue-specific expression of two metallothionein genes in common carp during cadmium exposure and temperature shock. Comp. Biochem. Physiol. C. 128, 457–456.Google Scholar
  13. 13.
    Hermesz, E., Ábrahám, M., Nemcsók, J. (2001) Identification of two hsp90 genes in carp. Comp. Biochem. Physiol. Part C 129, 397–407.Google Scholar
  14. 14.
    Hermesz, E., Gazdag, A. P., Ali, K. S., Nemcsók, J., Ábrahám, M. (2002) Differential regulation of the two metallothionein genes in common carp. Acta Biol. Hung. 53, 343–350.CrossRefGoogle Scholar
  15. 15.
    Kagi, J. H. R. (1993) Evolution, structure and chemical activity of class I metallothioneins: In: Suzuki, K. T., Imura, N., Kimura, M. (eds), Metallothionein III. Basel, Birkhäuser-Verlag, pp. 29–55.Google Scholar
  16. 16.
    Kang, Y. J., Chen, Y., Yu, A., Voss-McCowan, M., Epstein, P. N. (1997) Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. J. Clin. Investig. 100, 1501–1506.CrossRefGoogle Scholar
  17. 17.
    Kang, Y. J., Li, Y., Sun, X., Sun, X. (2003) Antiapoptotic effect and inhibition of ischemia/reperfusion-induced myocardial injury in metallothionein-overexpressing transgenic mice. Am. J. Pathol. 163, 1579–1586.CrossRefGoogle Scholar
  18. 18.
    Kim, J. H., Wang, S. Y., Kim, I. C., Ki, J. S., Raisuddin, S., Lee, J. S., Han, K. N. (2008) Cloning of a river pufferfish (Takifugu obscurus) metallothionein cDNA and study of its induction profile in cadmium-exposed fish. Chemosphere 71, 1251–1259.CrossRefGoogle Scholar
  19. 19.
    Kregel, K. C. J. (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Appl. Physiol. 92, 2177–2186.CrossRefGoogle Scholar
  20. 20.
    Latchman, D. S. (2001) Heat shock proteins and cardiac protection. Cardiovasc. Res. 51, 637–646.CrossRefGoogle Scholar
  21. 21.
    Margoshes, M., Vallee, B. L. (1957) A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79, 4813–4814.CrossRefGoogle Scholar
  22. 22.
    Misra, S., Zafarullah, M., Price-Haugghey, J., Gedamu, L. (1989) Analysis of stress-induced gene expression in fish cell lines exposed to heavy metals and heat shock. Biochem. Biophys. Acta 1007, 325–333.Google Scholar
  23. 23.
    Sass, J. B., Krone, P. H. (1997) Hsp90a gene expression may be a conserved feature of vertebrate somitogenesis. Exp. Cell Res. 233, 391–394.CrossRefGoogle Scholar
  24. 24.
    Valko, M., Morris, H., Cronin, M. T. (2005) Metals, toxicity and oxidative stress. Curr. Med. Chem. 12, 1161–1208.CrossRefGoogle Scholar
  25. 25.
    Van Campenhout, K., Infante, H. G., Adams, F., Blust, R. (2004) Induction and binding of Cd, Cu, and Zn to metallothionein in carp (Cyprinus carpio) using HPLC-ICP-TOFMS. Toxicol. Sci. 80, 276–287.CrossRefGoogle Scholar
  26. 26.
    Weber, T. E., Bosworth, B. G. (2005) Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish. Aquaculture 246, 483–492.CrossRefGoogle Scholar
  27. 27.
    Yellon, D. M., Latchman, D. S. (1992) Stress proteins and myocardial protection. J. Mol. Cell. Cardiol. 24, 113–124.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • K. Said Ali
    • 1
  • Ágnes Ferencz
    • 1
  • J. Nemcsók
    • 1
  • Edit Hermesz
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of SciencesUniversity of SzegedSzegedHungary

Personalised recommendations