Photosystem II Functionality and Antioxidant System Changes During Leaf Rolling in Post-Stress Emerging Ctenanthe setosa Exposed to Drought
Abstract
We studied the changes in antioxidant system and chlorophyll fluorescence parameters in post-stress emerging Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants (PSE plants) having reduced leaf area under drought stress causing leaf rolling and re-watering. PSE plants were compared to primary stressed plants (PS) in previous studies. The parameters were measured at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others is intermediate form). Water potentials and stomatal conductance of leaves were gradually decreased during leaf rolling. Similarly, maximum quantum efficiency of open PS II center and quantum yield of PS II decreased during the rolling period. Non-photochemical quenching of chlorophyll fluorescence decreased at score 2 then increased while photochemical quenching did not change during leaf rolling. Electron transport rate decreased only at score 4 but approximately reached to score 1 level after re-watering. Superoxide dismutase activity was not constant at all leaf rolling scores. Ascorbate peroxidase, catalase and glutathione reductase activities generally tended to increase during leaf rolling. Lipid peroxidation and H2O2 content increased at score 2 but decreased at the later scores. On the other hand, O2·− production increased during the rolling period. After re-watering of the plants having score 4 of leaf rolling, antioxidant enzyme activities were lower than those of score 1. Other physiological parameters also tended to reach the value of score 1. The results indicated that PSE plants gained drought tolerance by reducing leaf area effectively induced their antioxidant systems and protected the photosynthesis under drought stress similar to PS plants.
Keywords
Antioxidant enzymes Ctenanthe setosa chlorophyll fluorescence leaf rolling post-stress emerging plantAbbreviations
- APX
Ascorbate peroxidase
- Car
carotenoid
- Chl
chlorophyll
- CAT
catalase
- Fm
maximum fluorescence yield
- F0
minimum fluorescence yield
- Fs
steady-state fluorescence yield
- Fv/Fm
quantum efficiency of photosystem II
- NPQ
non-photochemical quenching of chlorophyll fluorescence
- PSII
photosystem II
- qP
photochemical quenching
- GR
glutathione reductase
- RW
Re-watering
- RWC
relative water content
- gs
stomatal conductance
- SOD
superoxide dismutase
- Ψleaf
leaf water potential
- ΦPS II
quantum yield of PSII
Preview
Unable to display preview. Download preview PDF.
References
- 1.Aebi, H. E. (1983) Catalase. In: Bergmeyer H.U. (ed.) Methods of Enzymatic Analysis. Verlag Chemie, Weinhern., pp. 273–286.Google Scholar
- 2.Aroca, R., Irigoyen, J. J., Sanchez-Diaz, M. (2003) Drought enhances maize chilling toleranceg. II. Photosynthetic traits and protective mechanism against oxidative stress. Physiol. Plant. 117, 540–549.CrossRefGoogle Scholar
- 3.Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.CrossRefGoogle Scholar
- 4.Beauchamp, C., Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287.CrossRefGoogle Scholar
- 5.Biehler, K., Haupt, S., Beckmann, J., Fock, H., Becker, T. W. (1997) Simultaneous CO2 and 16O2: 18O2-gas exchange and fluorescence measurements indicate differences in light energy dissipation between the wild-type and the phytochrome-deficient aurea mutant of tomato during water stress. J. Exp. Bot. 48, 1439–1449.CrossRefGoogle Scholar
- 6.Bilger, W., Björkman, O. (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 25, 173–185.CrossRefGoogle Scholar
- 7.Blum, A. (1996) Crop responses of drought and the interpretation of adaptation. Plant Growth Regul. 20, 135–148.CrossRefGoogle Scholar
- 8.Bowler, C., van Montagu, M., Inzé, D. (1992) Superoxide dismutase and stress tolerance. Annu. Rev. Plant Phys. 43, 83–116.CrossRefGoogle Scholar
- 9.Butow, B., Wynne, D., Sukenik, A., Hadas, O., Tel-Or, E. (1998) The synergistic effect of carbon concentration and high temperature on lipid peroxidation in Peridinium gatunense. J. Plankton Res. 20, 355–369.CrossRefGoogle Scholar
- 10.Capaldi, D. J., Taylor, K. E. (1983) A new peroxidase color reaction: oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with its formaldehyde azine. Application to glucose and choline oxidases. Anal. Biochem. 129, 329–336.CrossRefGoogle Scholar
- 11.Cornic, G., le Gouallec, J. L., Briantais, J. M., Hodges, M. (1989) Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatostema repens (Lour) Hall f.). Planta. 177, 84–90.CrossRefGoogle Scholar
- 12.Dall’Osto, L., Fiore, A., Cazzaniga, S., Giuliano, G., Bassi, R. (2007) Different roles of α- and β-branch xanthophylls in photosystem assembly and photoprotection. J. Biol. Chem. 282, 35056–36068.CrossRefGoogle Scholar
- 13.Foyer, C. H., Halliwell, B. (1976) Presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133, 21–25.CrossRefGoogle Scholar
- 14.Foyer, C. H., Descourvieres, P., Kunert, K. J. (1994) Protection against oxygen radicals: an importance defence mechanism studied in transgenic plants. Plant Cell Environ. 17, 507–523.CrossRefGoogle Scholar
- 15.Fracheboud, Y., Leipner, J. (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: DeEll, J. R., Toivonen, P. M. A. (eds) Practical Applications of Chloropyll Fluorescence in Plant Biology. Kluwer Acad. Pub., USA, pp. 126–147.Google Scholar
- 16.Frahry, G., Schopfer, P. (2001) NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta 212, 175–183.Google Scholar
- 17.Gamble, P. E., Burke, J. J. (1984) Effect of water stress on the chloroplast antioxidant system I. Alterations in glutathione reductase activity. Plant Physiol. 76, 615–621.CrossRefGoogle Scholar
- 18.Halliwell, B., Gutteridge, J. N. C. (1999) Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, Oxford.Google Scholar
- 19.Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stochiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.CrossRefGoogle Scholar
- 20.Janda, T., Szalai, G., Lesko, K., Yordanova, R., Apostol, S., Popova, L. P. (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochem. 68, 1674–1682.CrossRefGoogle Scholar
- 21.Jaspars, E. M. J. (1965) Pigmentation of tobacco crown-gall tissues cultured in vitro in dependence of the composition of the medium. Physiol. Plant. 18, 933–940.CrossRefGoogle Scholar
- 22.Kadığu, A., Terzi, R. (2007) A dehydration avoidance mechanism: leaf rolling. The Bot. Rev. 73, 290–302.CrossRefGoogle Scholar
- 23.Li, Q. M., Liu, B. B., Wu, Y., Zou, Z. R. (2008) Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. J. Intgr. Plant Biol. 50, 1–11.CrossRefGoogle Scholar
- 24.Lichtenthaler, H. K., Rinderle, U. (1988) The role of chlorophyll fluorescence in detection of stress conditions in plants. Crit. Rev. Anal. Chem. 19, 529–585.Google Scholar
- 25.Mittler, R., Zilinskas, B. A. (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought and following recovery from drought. Plant J. 5, 397–405.CrossRefGoogle Scholar
- 26.Nakano, Y., Asada, Y. (1987) Purification of ascorbate peroxidase from spinach chloroplasts: Its inactivation in ascorbat depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28, 131–135.Google Scholar
- 27.Nar, H., Sağlam, A., Terzi, R., Várkonyi, Z., Kadığlu, A. (2009) Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetika 47 (in press).Google Scholar
- 28.Niyogi, K. K. (1999) Photoprotection revisited: genetic and molecular approaches. Ann. Rev. Plant Phyiol. Plant Mol. Biol. 50, 333–359.CrossRefGoogle Scholar
- 29.Oppenheimer, H. R. (1960) Plant Water Relationships in Arid and Semi-Arid Conditions, Unesco, UK, pp. 105–138.Google Scholar
- 30.O’Toole, J. C., Moya, T. B. (1978) Genotypic variation in maintenance of leaf water potential in rice. Crop Sci. 18, 873–876.CrossRefGoogle Scholar
- 31.Rensburg, L. V., Kruger, G. H. J. (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J. Plant Physiol. 143, 730–737.CrossRefGoogle Scholar
- 32.Sağlam, A., Kadıoğlu, A., Terzi, R., Saruhan, N. (2008) Physiological changes in them in post-stress emerging Ctenanthe setosa plants under drought conditions, Russ. J. Plant Physiol. 55, 48–53.Google Scholar
- 33.Sairam, R. K., Shukla, D. S., Saxena, D. C. (1997/1998) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol. Plantarum. 40, 357–364.CrossRefGoogle Scholar
- 34.Sairam, R. K., Chandrasekhar, V., Srivastava, G. C. (2001) Comparison of hexaploid and tetraploid wheat cultivars in their responses to water stress. Biol. Plantarum. 44, 89–94.CrossRefGoogle Scholar
- 35.Saruhan, N., Terzi, R., Sağlam, A., Nar, H., Kadıoğlu, A. (2010) Scavenging of reactive oxygen species in apoplastic and symplastic areas of rolled leaves in Ctenanthe setosa under drought stress. Acta Biol. Hung. 61 (in press).Google Scholar
- 36.Saruhan, N., Terzi, R., Sağlam, A., Kadıoğlu, A. (2009) The role of leaf rolling in regulation of ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa. Biol. Res. 42, 315–316.CrossRefGoogle Scholar
- 37.Sharma, P., Dubey, S. (2005) Drought induces oxidative stres and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46, 209–221.CrossRefGoogle Scholar
- 38.Terzi, R., Kadıoğlu, A. (2006) Drought stress tolerance and the antioxidant enzyme system in Ctenanthe setosa. Acta Biol. Cracov. Bot. 48, 89–96.Google Scholar
- 39.Türkan, İ., Bor, M., Özdemir, F., Koca, H. (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231.Google Scholar
- 40.van Kooten, O., Snel, J. F. H. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology, Photosynth. Res. 25, 147–150.CrossRefGoogle Scholar
- 41.Zhang, Y. J., Zhao, C. J., Liu, L. Y., Wang, J. H., Wang, R. C. (2005) Chlorophyll fluorescence detected passively by difference reflectance spectra of wheat (Triticum aestivum L.) leaf. J. Intgr. Plant Biol. 47, 1228–1235.CrossRefGoogle Scholar
- 42.Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biol. Plantarum. 50, 389–394.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.