Advertisement

Acta Biologica Hungarica

, Volume 60, Issue 2, pp 211–219 | Cite as

Effect of Foliar Feeding on Nitrogen Assimilation in Alfalfa Plants at Insufficient Molybdenum Supply

  • Marieta Hristozkov
  • Maria Geneva
  • Ira StanchevaEmail author
Article

Abstract

The influence of foliar feeding on the nitrogen assimilation in alfalfa plants under conditions of Mo shortage was studied. It was established that foliar fertilization with 0.3% solution of Agroleaf ® resulted in increase of nitrogen fixation and nitrogen assimilation in the absence of Mo. Insufficient molybdenum supply leads to significant reduction of plant Mo content and nitrogen-fixing activity, while stress induced amino acids as alanine, GABA, threonine, proline and serine increased repeatedly. The negative effect of Mo deficiency on the enzyme activities related to the primary nitrogen assimilation (NR, GS, GOGAT) and plant growth diminished due to the foliar absorbed nutrients.

Keywords

Alfalfa Mo deficiency foliar feeding nitrogen assimilation nitrogen fixation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72, 248–254.CrossRefGoogle Scholar
  2. 2.
    Brodrick, S., Giller, K. (1991) Root nodules of phaseolus: Efficient scavengers of molybdenum for N2-fixation. J. Exp. Bot. 42, 679–686.CrossRefGoogle Scholar
  3. 3.
    Chen, F. L., Cullimore, J. V. (1988) Two isozymes of NADH-dependent glutamate synthase in root nodules of Phaseolus vulgaris L.: purification, properties and activity changes during nodule development. Plant Physiol. 88, 1411–1417.CrossRefGoogle Scholar
  4. 4.
    Dahlquist, R. L., Knoll, J. W. (1978) Inductively coupled plasma atomic emission spectrometer: Analysis of biological materials and ASB as a liming material would not result in further major, trace and ultra-trace elements. Appl. Spectrosc. 32, 1–29.CrossRefGoogle Scholar
  5. 5.
    Frechilla, S., Lasa, B., Aleu, M., Juanarena, N., Lamsfus, C., Aparicio-Tejo, P. M. (2002) Short-term ammonium supply stimulates glutamate dehydrogenase activity and alternative pathway respiration in roots of pea plants. J. Plant Physiol. 159, 811–818.CrossRefGoogle Scholar
  6. 6.
    Gupta, U., Lipsett, J. (1981) Molybdenum in soil, plants, and animals. Adv. Agron. 34, 73–115.CrossRefGoogle Scholar
  7. 7.
    Hageman, R. H., Reed, A. J. (1980) Nitrate reductase from higher plants. Method Enzymol. 69, 270–280.CrossRefGoogle Scholar
  8. 8.
    Hardy, R. F., Burns, R. C., Holsten, R. D. (1973) Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47–81.CrossRefGoogle Scholar
  9. 9.
    Hoagland, D. R., Arnon, D. I. (1950) The water-culture method for growing plants without soil. Calif. Agr. Exp. Sta. Circ. 347, 1–39.Google Scholar
  10. 10.
    Hristozkova, M, Geneva, M., Stancheva, I., Georgiev, G. (2007) Response of inoculated foliar fed pea plants (Pisum sativum L.) to reduced Mo supply. Acta Biol. Hung. 58, 87–92.CrossRefGoogle Scholar
  11. 11.
    Hristozkova, M., Geneva, M., Stancheva, I., Georgiev, G. (2007b) Nitrogen assimilatory enzymes and amino acid content in inoculated foliar fertilized pea plants grown at reduced molybdenum concentration. J. Plant Nutr. 309, 1409–1419.CrossRefGoogle Scholar
  12. 12.
    Journet, E.-P., Barker, D., Harrison, H., Kondorosi, E. (2001) M. truncatula as biological material (Module 1). In: EMBO Practical Course on the New Plant Model System Medicago truncatula. Gif-sur-Yvette, pp. 1–29.Google Scholar
  13. 13.
    Kaiser, B., Gridley, K., Brady, J., Phillips, T., Tyerman, S. (2005) The role of molybdenum in agricultural plant production. Ann. Bot. 96, 745–754.CrossRefGoogle Scholar
  14. 14.
    Lea, P., Sodek, L., Parry, M., Shewry, P., Halford, N. (2007) Asparagine in plants. Ann. App. Biol. 150, 1–26.CrossRefGoogle Scholar
  15. 15.
    Lozanov, V., Petrov, S., Mitev, V. (2004) Simultaneous analysis of amino acid and biogenic polyamines by high-performance liquid chromatography after pre-column derivatization with N-(9-fluorenylmethoxycarbonyloxy) succinimide. J. Chrom. 1025, 201–208.CrossRefGoogle Scholar
  16. 16.
    Marschner, H. (1995) Mineral Nutrition of Higher Plants. Acad. Press, London, pp. 887.Google Scholar
  17. 17.
    Mendel, R., Hänsch, R. (2002) Molybdo enzymes and molybdenum cofactor in plants. J. Exp. Bot. 375, 1689–1698.CrossRefGoogle Scholar
  18. 18.
    Notton, B. (1983) Micronutrients and nitrate reductase. In: Robb, D. A., Pierpoint, W. S. (eds) Metals and Micronutrients: Uptake and Utilization by Plants. Academic Press Inc., Bath, pp. 219–240.CrossRefGoogle Scholar
  19. 19.
    O’Neal, D., Joy, K. W. (1973) Glutamine synthetase of pea leaves, I. Purification, stabilization and pH optima. Arch. Bioch. Biophys. 159, 113–122.CrossRefGoogle Scholar
  20. 20.
    Oaks, A. (1994) Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot. 72, 739–750.CrossRefGoogle Scholar
  21. 21.
    Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M., Rosario de Felipe, M., Harrison, J., Vanacker, H., Foyer, C. (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol. 165, 683–701.CrossRefGoogle Scholar
  22. 22.
    Ratcliffe, R. (1995) Metabolic aspects of the anoxic response in plant tissue. In: N. Smirnoff (ed.) Environment and Plant Metabolism: Flexibility and Acclimation. Bios Scientific, Oxford, pp. 111–127.Google Scholar
  23. 23.
    Rosendahl, L., Jakobsen, I. (1987) Rhizobium strain effects on pea: the relation between nitrogen accumulation, phosphoenolpyrovate carboxylase activity in nodules and asparagine in root bleeding sap. Physiol. Plant. 71, 281–286.CrossRefGoogle Scholar
  24. 24.
    Stewart, G., Larher, F. (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In: Miflin, B. J. (ed.) The Biochemistry of Plants. Academic Press, New York, Vol. 5, pp. 609–635.Google Scholar
  25. 25.
    Streeter, J. G. (1981) Effect of nitrate in the rooting medium on carohydrate composition of soybean nodules. Plant Physiol. 69, 1429–1434.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Marieta Hristozkov
    • 1
  • Maria Geneva
    • 1
  • Ira Stancheva
    • 1
    Email author
  1. 1.Acad. M. Popov, Institute of Plant PhysiologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations