Preliminary Studies on the Effect of Zinc and Selenium on Vanadium-Induced Cytotoxicity in vitro

Abstract

In the present work, we investigated the cytotoxicity of vanadium and the influence of zinc and selenium on vanadium-dependent cell damage in the BALB/c 3T3 cell culture. Treatment of cells for 24 hours with medium containing 50, 100 and 200 μM NaVO3 caused a. significant decrease in the cell viability as measured by MTT test. Furthermore, the assays for reactive oxygen species (NBT reduction and phenol red oxidation) demonstrated the increase in superoxide and hydrogen peroxide production. In the cotreatment studies, the cells were exposed to NaVO3 (50, 100 and 200 μM) in the presence of nontoxic concentrations of ZnCl2 (5 μM) or Na2SeO3 (0.5 μM). Following 24 h. incubation, the cell viability (assessed in MTT assay) and reactive oxygen species generation were evaluated. Our data suggest that zinc and selenium, in the concentrations mentioned above, provide no protection against adverse actions induced by sodium metavanadate at concentration levels of 50, 100 and 200 μM. To our knowledge, this is the first report from in vitro studies on interaction between pentavalent vanadium and trace elements that function as antioxidants: zinc and selenium.

References

  1. 1.

    Bay, B. H., Sit, K. H., Paramanantham, R., Chan, Y. G. (1997) Hydroxyl free radicals generated by vanadyl[IV] induce cell blebbing in mitotic human Chang liver cells. BioMetals 10, 119–122.

    CAS  Article  Google Scholar 

  2. 2.

    Capella, L. S., Gefe, M. R., Silva, E. F., Affonso-Mitidieri, O., Lopes, A. G., Rumjanek, V. M., Capella, M. A. M. (2002) Mechanisms of vanadate-induced cellular toxicity: role of cellular glutathione and NADPH. Arch. Biochem. Biophys. 406, 65–72.

    CAS  Article  Google Scholar 

  3. 3.

    Chakraborty, T., Chatterjee, A., Saralaya, M. G., Dhachinamoorthi, D., Chatterjee, M. (2006) Vanadium inhibits the development of 2-acetylaminofluorene-induced premalignant phenotype in a. two-stage chemical rat hepatocarcinogenesis model. Life Sci. 78, 2839–2851.

    CAS  Article  Google Scholar 

  4. 4.

    Chen, C., Yu, H., Zhao, J., Li, B., Qu, L., Liu, S., Zhang, P., Chai, Z. (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ. Health Perspect. 114, 297–301.

    CAS  Article  Google Scholar 

  5. 5.

    Cortizo, A. M., Bruzzone, L., Molinuevo, S., Etcheverry, S. B. (2000) A. possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147, 89–99.

    CAS  Article  Google Scholar 

  6. 6.

    Cortizo, A. M., Salice, V. C., Vescina, C. M., Etcheverry, S. B. (1997) Proliferative and morphological changes induced by vanadium compounds on Swiss 3T3 fibroblasts. BioMetals 10, 127–133.

    CAS  Article  Google Scholar 

  7. 7.

    Demelash, A., Karlsson, J. O., Nilsson, M., Bjorkman, U. (2004) Selenium has a. protective role in caspase-3-dependent apoptosis induced by H2O2 in primary cultured pig thyrocytes. Eur J. Endocrinol. 150, 841–849.

    CAS  Article  Google Scholar 

  8. 8.

    Evangelou, A. M. (2002) Vanadium in cancer treatment. Crit. Rev. Oncol. Hematol. 42, 249–265.

    Article  Google Scholar 

  9. 9.

    Fischer, A. B., Skreb, Y. (2001) In vitro toxicology of heavy metals using mammalian cells: an overview of collaborative research data. Arh. Hig. Rada Toksikol. 52, 333–354.

    CAS  PubMed  Google Scholar 

  10. 10.

    Gaetke, L. M., Chow, C. K. (2003) Copper toxicity, oxidative stress and antioxidant nutrients. Toxicology 189, 147–163.

    CAS  Article  Google Scholar 

  11. 11.

    Garcia, J. J., Martinez-Ballarin, E., Millan-Plano, S., Allue, J. L., Albendea, C., Fuentes, L., Escanero, J. F. (2005) Effects of trace elements on membrane fluidity. J. Trace Elem. Med. Biol. 19, 19–22.

    CAS  Article  Google Scholar 

  12. 12.

    Gurer, H., Ercal, N. (2000) Can antioxidants be beneficial in the treatment of lead poisoning. Free Radical Biol. Med. 29, 927–945.

    CAS  Article  Google Scholar 

  13. 13.

    Haider, S. S., Abdel-Gayoum, A. A., El-Fakhri, M., Ghwarsha, K. M. (1998) Effect of selenium on vanadium toxicity in different regions of rat brain. Hum. Exp. Toxicol. 17, 23–28.

    CAS  Article  Google Scholar 

  14. 14.

    Hsu, P. C., Guo, Y. L. (2002) Antioxidant nutrients and lead toxicity. Toxicology 180, 33–44.

    CAS  Article  Google Scholar 

  15. 15.

    Huang, C., Zhang, Z., Ding, M., Li, I., Ye, I., Leonard, S. S., Shen, H. M., Butterworth, L., Lu, Y., Costa, M., Rojanasakul, Y., Castranova, V., Vallyathan, V., Shi, X. (2000) Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J. Biol. Chem. 275, 32516–32522.

    CAS  Article  Google Scholar 

  16. 16.

    Mazzotti, E., Sabbioni, E., Ghiani, M., Cocco, B., Ceccatelli, R., Fortaner, S. (2001) In vitro assessment of cytotoxicity and carcinogenic potential of chemicals: evaluation of the cytotoxicity induced by 58 metal compounds in the Balb/3T3 cell line. ATLA 29, 601–611.

    CAS  PubMed  Google Scholar 

  17. 17.

    Mazzotti, F., Sabbioni, E., Ponti, J., Ghiani, M., Fortaner, S., Rossi, G. L. (2002) In vitro setting of dose-effect relationship of 32 metal compounds in the Balb/3T3 cell line, as a. basis for predicting their carcinogenic potential. ATLA 30, 209–217.

    CAS  PubMed  Google Scholar 

  18. 18.

    Morinville, A., Maysinger, D., Shaver, A. (1998) From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. TIPS 19, 452–460.

    CAS  PubMed  Google Scholar 

  19. 19.

    Mukherjee, B., Patra, B., Mahapatra, S., Benerjee, P., Tiwari, A., Chatterjee, M. (2004) Vanadium-an element of atypical biological significance. Toxicol. Lett. 150, 135–143.

    CAS  Article  Google Scholar 

  20. 20.

    Pick, E. (1986) Microassays for superoxide and hydrogen peroxide production and nitroblue tetra-zolium reduction using an enzyme immunoassay microplate reader. Methods Enzymol. 132, 407–421.

    CAS  Article  Google Scholar 

  21. 21.

    Powell, S. R. (2000) The antioxidant properties of zinc. J. Nutr. 130, 1447S-1454S.

  22. 22.

    Putnam, K. P., Bombick, D. W., Doolittle, D. J. (2002) Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol. In Vitro 16, 599–607.

    CAS  Article  Google Scholar 

  23. 23.

    Rao, A. V. S., Ravishankar, H. N., Ramasarma, T. (1998) Diperoxovanadate participates in peroxidation reactions of H2O2 in presence of abundant catalase. Biochim. Biophys. Acta 1381, 249–255.

    CAS  Article  Google Scholar 

  24. 24.

    Riley, M. R., Boesewetter, D. E., Kim, A. M., Sirvent, F. P. (2003) Effects of metals Cu, Fe, Ni, V., and Zn on rat lung epithelial cells. Toxicology 190, 171–184.

    CAS  Article  Google Scholar 

  25. 25.

    Rossman, T. G., Uddin, A. N. (2004) Selenium prevents spontaneous and arsenite-induced mutagenesis. Int. Congr. Ser. 1275, 173–179.

    Article  Google Scholar 

  26. 26.

    Rudolf, E., Cervinka, M., Cerman, J. (2005) Zinc has ambiguous effects on chromium (Vl)-induced oxidative stress and apoptosis. J. Trace Elem. Med. Biol. 18, 251–260.

    CAS  Article  Google Scholar 

  27. 27.

    Shechter, Y., Goldwaser, I., Mironchik, M., Fridkin, M., Gefel, D. (2003) Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coord. Chem. Rev. 237, 3–11.

    CAS  Article  Google Scholar 

  28. 28.

    Shimizu, M., Hochadel, J. F., Fulmer, B. A., Waalkes, M. P. (1998) Effect of glutathione depletion and metallothionein gene expression on arsenic-induced cytotoxicity and c-myc expression in vitro. Toxicol. Sci. 45, 204–211.

    CAS  PubMed  Google Scholar 

  29. 29.

    Stefanidou, M., Maravelias, C., Dona, A., Spiliopoulou, C. (2006) Zinc: a. multipurpose trace element. Arch. Toxicol. 80, 1–9.

    CAS  Article  Google Scholar 

  30. 30.

    Szuster-Ciesielska, A., Stachura, A., Slotwinska, M., Kaminska, T., Sniezko, R., Paduch, R., Abramczyk, D., Filar, J., Kandefer-Szerszen, M. (2000) The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145, 159–171.

    CAS  Article  Google Scholar 

  31. 31.

    Valko, M., Morris, H., Cronin, M. T. (2005) Metals, toxicity and oxidative stress. Curr Med. Chem. 12, 1161–1208.

    CAS  Article  Google Scholar 

  32. 32.

    Vanadium. In: Air Quality Guidelines - Second Edition. WHO Regional Office for Europe, Copenhagen, Denmark, 2000, Chapter 6.12, pp. 1–9.

  33. 33.

    Watjen, W., Cox, M., Biagioli, M., Beyersmann, D. (2002) Cadmium-induced apoptosis in C6 glioma cells: mediation by caspase-9 activation. BioMetals 15, 15–25.

    CAS  Article  Google Scholar 

  34. 34.

    Zaporowska, H., Scibior, A. (1999) Activity of neutrophilic granulocytes in rats following intoxication with vanadium and zinc. Folia Histochem. Cytobiol. 37, 113–114.

    CAS  PubMed  Google Scholar 

  35. 35.

    Zaporowska, H., Wasilewski, W. (1992) Haematological effects of vanadium on living organisms. Comp. Biochem. Physiol. 102C, 223–231.

    CAS  Google Scholar 

  36. 36.

    Zaporowska, H., Wasilewski, W. (1992) Combined effect of vanadium and zinc on certain selected haematological indices in rats. Comp. Biochem. Physiol. 103C, 143–147.

    CAS  Google Scholar 

  37. 37.

    Zeng, H., Combs, G. F. (2008) Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J. Nutr. Biochem. 19, 1–7.

    Article  Google Scholar 

  38. 38.

    Zhang, Z., Huang, C., Li, I., Leonard, S. S., Lanciotti, R., Butterworth, L., Shi, X. (2001) Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch. Biochem. Biophys. 392, 311–320.

    CAS  Article  Google Scholar 

  39. 39.

    Zhang, Z., Leonard, S. S., Huang, C., Vallyathan, V., Castranova, V., Shi, X. (2003) Role of reactive oxygen species and MAPKs in vanadate-induced G2/M phase arrest. Free Radic. Biol. Med. 34, 1333–1342.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iwona Zwolak.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Zwolak, I., Zaporowska, H. Preliminary Studies on the Effect of Zinc and Selenium on Vanadium-Induced Cytotoxicity in vitro. BIOLOGIA FUTURA 60, 55–67 (2009). https://doi.org/10.1556/ABiol.60.2009.1.6

Download citation

Keywords

  • Cell culture
  • vanadium
  • zinc
  • selenium
  • reactive oxygen species