Acta Biologica Hungarica

, Volume 60, Issue 1, pp 127–136 | Cite as

Thermal Inactivation Kinetics of Lactococcus lactis subsp. lactis Bacteriophage Pll98-22

  • Pinar Şanlibaba
  • S. BuzrulEmail author
  • Nefise Akkoç
  • H. Alpas
  • M. Akçelik


Survival curves of Lactococcus lactis subsp. lactis bacteriophage pll98 inactivated by heat were obtained at seven temperature values (50–80 °C) in M17 broth and skim milk. Deviations from first-order kinetics in both media were observed as sigmoidal shapes in the survival curves of pll98. An empirical model with four parameters was used to define the thermal inactivation. Number of parameters of the model was reduced from four to two in order to increase the robustness of the model. The reduced model produced comparable fits to the full model. Both the survival data and the calculations done using the reduced model (time necessary to reduce the number of phage pll98 six- or seven- log-10) indicated that skim milk is a more protective medium than M17 broth within the assayed temperature range.


Lactococcus lactis subsp. lactis bacteriophage skim milk M17 broth thermal inactivation predictive microbiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avsaroglu, M. D., Buzrul, S., Alpas, H., Akcelik, M. (2007) Hypochlorite inactivation kinetics of lac -tococcal bacteriophages. LWT - Food Sci. Technol. 40, 1369–1375.CrossRefGoogle Scholar
  2. 2.
    Buzrul, S., Oztiirk, P., Alpas, H., Akcelik, M. (2007) Thermal and chemical inactivation of lactococ-cal bacteriophages. LWT - Food Sci. Technol. 40, 1671–1677.CrossRefGoogle Scholar
  3. 3.
    Buzrul, S., Alpas, H., Bozoglu, F. (2005) Use of Weibull frequency distribution model to describe the inactivation of Alicyclobacillus acidoterrestris by high pressure at different temperatures. Food Res. Int, 38, 151–157.CrossRefGoogle Scholar
  4. 4.
    Chopin, M.-C. (1980) Resistance of 17 mesophilic lactic Streptococcus bacteriophages to pasterui-sation and spray drying. J. Dairy Res. 47, 131–139.CrossRefGoogle Scholar
  5. 5.
    de Fabrizio, S. V., Ledford, R. A., Parada, J. L. (1999) Heat resistance of Lactococcus lactis bacteriophages. Microbiology-Aliments-Nutrition 17, 191–198.Google Scholar
  6. 6.
    Fernandez, A., Ocio, M. J., Fernandez, P. S., Rodrigo, M., Martinez, A. (1999) Application of nonlinear regression analysis to the estimation of kinetic parameters for two enterotoxigenic strains of Bacillus cereus spores. Food Microbiol. 16, 607–613.CrossRefGoogle Scholar
  7. 7.
    Fortier, L.-C, Bouchard, J. D., Moineau, S. (2005) Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein K. J. Bacteriol. 187, 3721–3730.CrossRefGoogle Scholar
  8. 8.
    Koka, M., Mikolajcik, M. (1970) Kinetics of thermal destruction of bacteriophages active against Streptococcus lactis. J. Dairy Sci. 53, 853–856.Google Scholar
  9. 9.
    Lund, D. B. (1983) Considerations in modelling food processes. Food Technol. 37, 143–151.Google Scholar
  10. 10.
    Mafart, P., Couvert, O., Gaillard, S., Leguerinel, I. (2002) On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int. J. Food Microbiol. 72, 107–113.CrossRefGoogle Scholar
  11. 11.
    Muller-Merbach, M., Neve, H., Hinrics, J. (2005) Kinetics of the thermal inactivation of the Lactococcus lactis bacteriophage P008. J. Dairy Res. 72, 281–286.CrossRefGoogle Scholar
  12. 12.
    Quiberoni, A., Guglielmotti, D. M., Reinheimer, J. A. (2003) Inactivation of Lactobacillus del-brueckii bacteriophages by heat and biocides. Int. J. Food Microbiol. 84, 51–62.CrossRefGoogle Scholar
  13. 13.
    Peleg, M. (2003a) Calculation of the non-isothermal inactivation patterns of microbes having sig-moidal isothermal semi-logarithmic survival curves. Critical Rev. Food Sci. 43, 645–658.CrossRefGoogle Scholar
  14. 14.
    Peleg, M. (2003b) Microbial survival curves: Interpretation, mathematical modeling, and utilization. Comments Theor Biol. 8, 357–387.CrossRefGoogle Scholar
  15. 15.
    Szczepanska, A. K., Hejnowicz, M. S., Kolakowski, P., Bardowski, J. (2007) Biodiversity of Lactococcus lactis bacteriophages in polish dairy environment. Acta Biochim. Pol. 54, 151–158.CrossRefGoogle Scholar
  16. 16.
    Suarez, V. B., Reinheimer, J. A. (2002) Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages. J. Food Protect. 65, 1756–1759.CrossRefGoogle Scholar
  17. 17.
    van Boekel, M. A. J. S. (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 74, 139–159.CrossRefGoogle Scholar
  18. 18.
    Zottola, E. A., Marth, E. H. (1966) Thermal inactivation of bacteriophages active against lactic streptococci. J. Dairy Sci. 49, 1338–1342.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Pinar Şanlibaba
    • 1
  • S. Buzrul
    • 2
    Email author
  • Nefise Akkoç
    • 3
  • H. Alpas
    • 2
  • M. Akçelik
    • 3
  1. 1.Food Technology Department, Kalecik High SchoolAnkara UniversityAnkaraTurkey
  2. 2.Food Engineering DepartmentMiddle East Technical UniversityAnkaraTurkey
  3. 3.Biology Department, Science FacultyAnkara UniversityTandoğan, AnkaraTurkey

Personalised recommendations