Thermal Inactivation Kinetics of Lactococcus lactis subsp. lactis Bacteriophage Pll98-22

Abstract

Survival curves of Lactococcus lactis subsp. lactis bacteriophage pll98 inactivated by heat were obtained at seven temperature values (50–80 °C) in M17 broth and skim milk. Deviations from first-order kinetics in both media were observed as sigmoidal shapes in the survival curves of pll98. An empirical model with four parameters was used to define the thermal inactivation. Number of parameters of the model was reduced from four to two in order to increase the robustness of the model. The reduced model produced comparable fits to the full model. Both the survival data and the calculations done using the reduced model (time necessary to reduce the number of phage pll98 six- or seven- log-10) indicated that skim milk is a more protective medium than M17 broth within the assayed temperature range.

References

  1. 1.

    Avsaroglu, M. D., Buzrul, S., Alpas, H., Akcelik, M. (2007) Hypochlorite inactivation kinetics of lac -tococcal bacteriophages. LWT - Food Sci. Technol. 40, 1369–1375.

    Article  Google Scholar 

  2. 2.

    Buzrul, S., Oztiirk, P., Alpas, H., Akcelik, M. (2007) Thermal and chemical inactivation of lactococ-cal bacteriophages. LWT - Food Sci. Technol. 40, 1671–1677.

    CAS  Article  Google Scholar 

  3. 3.

    Buzrul, S., Alpas, H., Bozoglu, F. (2005) Use of Weibull frequency distribution model to describe the inactivation of Alicyclobacillus acidoterrestris by high pressure at different temperatures. Food Res. Int, 38, 151–157.

    Article  Google Scholar 

  4. 4.

    Chopin, M.-C. (1980) Resistance of 17 mesophilic lactic Streptococcus bacteriophages to pasterui-sation and spray drying. J. Dairy Res. 47, 131–139.

    CAS  Article  Google Scholar 

  5. 5.

    de Fabrizio, S. V., Ledford, R. A., Parada, J. L. (1999) Heat resistance of Lactococcus lactis bacteriophages. Microbiology-Aliments-Nutrition 17, 191–198.

    Google Scholar 

  6. 6.

    Fernandez, A., Ocio, M. J., Fernandez, P. S., Rodrigo, M., Martinez, A. (1999) Application of nonlinear regression analysis to the estimation of kinetic parameters for two enterotoxigenic strains of Bacillus cereus spores. Food Microbiol. 16, 607–613.

    CAS  Article  Google Scholar 

  7. 7.

    Fortier, L.-C, Bouchard, J. D., Moineau, S. (2005) Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein K. J. Bacteriol. 187, 3721–3730.

    CAS  Article  Google Scholar 

  8. 8.

    Koka, M., Mikolajcik, M. (1970) Kinetics of thermal destruction of bacteriophages active against Streptococcus lactis. J. Dairy Sci. 53, 853–856.

  9. 9.

    Lund, D. B. (1983) Considerations in modelling food processes. Food Technol. 37, 143–151.

    Google Scholar 

  10. 10.

    Mafart, P., Couvert, O., Gaillard, S., Leguerinel, I. (2002) On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int. J. Food Microbiol. 72, 107–113.

    CAS  Article  Google Scholar 

  11. 11.

    Muller-Merbach, M., Neve, H., Hinrics, J. (2005) Kinetics of the thermal inactivation of the Lactococcus lactis bacteriophage P008. J. Dairy Res. 72, 281–286.

    Article  Google Scholar 

  12. 12.

    Quiberoni, A., Guglielmotti, D. M., Reinheimer, J. A. (2003) Inactivation of Lactobacillus del-brueckii bacteriophages by heat and biocides. Int. J. Food Microbiol. 84, 51–62.

    CAS  Article  Google Scholar 

  13. 13.

    Peleg, M. (2003a) Calculation of the non-isothermal inactivation patterns of microbes having sig-moidal isothermal semi-logarithmic survival curves. Critical Rev. Food Sci. 43, 645–658.

    Article  Google Scholar 

  14. 14.

    Peleg, M. (2003b) Microbial survival curves: Interpretation, mathematical modeling, and utilization. Comments Theor Biol. 8, 357–387.

    Article  Google Scholar 

  15. 15.

    Szczepanska, A. K., Hejnowicz, M. S., Kolakowski, P., Bardowski, J. (2007) Biodiversity of Lactococcus lactis bacteriophages in polish dairy environment. Acta Biochim. Pol. 54, 151–158.

    CAS  Article  Google Scholar 

  16. 16.

    Suarez, V. B., Reinheimer, J. A. (2002) Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages. J. Food Protect. 65, 1756–1759.

    Article  Google Scholar 

  17. 17.

    van Boekel, M. A. J. S. (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 74, 139–159.

    Article  Google Scholar 

  18. 18.

    Zottola, E. A., Marth, E. H. (1966) Thermal inactivation of bacteriophages active against lactic streptococci. J. Dairy Sci. 49, 1338–1342.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Buzrul.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Şanlibaba, P., Buzrul, S., Akkoç, N. et al. Thermal Inactivation Kinetics of Lactococcus lactis subsp. lactis Bacteriophage Pll98-22. BIOLOGIA FUTURA 60, 127–136 (2009). https://doi.org/10.1556/ABiol.60.2009.1.11

Download citation

Keywords

  • Lactococcus lactis subsp. lactis bacteriophage
  • skim milk
  • M17 broth
  • thermal inactivation
  • predictive microbiology