Type of Cell Death and the Role of Acetylcholinesterase Activity in Neurotoxicity Induced by Paraoxon in Cultured Rat Hippocampal Neurons


Organophosphate (Ops) neurotoxicity is attributed both to its well-known cholinergic and non-cholinergic effects. In the present study we compared enzymatic and morphologic changes in neurons exposed to paraoxon during one day and one week. The effect of exposure time is important in neurotoxicity of Ops. The longer the exposure time is the more damage is observed in neurons, although there are few investigations about the effect in the post-exposure period. Hippocampal cells were obtained from rat neonates and cultured in Neurobasal/B27. Paraoxon at 50 and 100 μM were added. Inverted microscope and electron microscope were used to study cell morphology and Neutral Red staining was used to measure viability. We also assayed caspase-3 and (acetylcholinesterase) AChE activity. Hoechst staining was utilized to determine the type of cell death. Culture medium was replaced after 24 h in one-day group, however, tests were all carried out at the end of the first week in both group.

The results indicate that paraoxon reduced the viability in a dose-dependent manner. Our results do not confirm apoptosis in either group; it seems that the cell death in one-day exposure group was not AChE dependent. In conclusion, present data imply that the toxicity of paraoxon is both dose and duration dependent, which may even remain after the cessation of exposure.





Central nervous system




2,2’-dinitro 5,5’-diptio-dibenzoic acid


Enzyme linked immunosorbent assay


4-(2-hydroxyethyl)-1 -piperazineethanesulfonic acid


Neutral Red


N-methyl, D-aspartate




scanning electron microscopy


O-ethyl-S-[2(diisopropylamino) ethyl] methylphosphonothiolate


  1. 1.

    Axelrad, J. C., Howard, C. V., McLean, W. G. (2003) The effects of acute pesticide on neuroblastoma cells chronically exposed to diazinon. Toxicology 185, 67–78.

    CAS  Article  Google Scholar 

  2. 2.

    Bozzola, J. J., Russell, L. D. (1999) Electron microscopy (principle and techniques for biologist). Jones & Bartletts, Massachusetts, pp. 49–71.

    Google Scholar 

  3. 3.

    Bigbee, J. W., Sharma, K. V., Gupta, J. J., Dupree, J. L. (1999) Morphogenetic role for acetylcholinesterase in axonal out growth during neural development. Environ. Health. Perspect. 107, 81–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bradford, M. M. (1976) A. rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Annual. Biochem. 72, 248–254.

    CAS  Article  Google Scholar 

  5. 5.

    Crumpton, T. L., Seidler, F. J., Slotkin, T. A. (2000) Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Research 857, 87–98.

    CAS  Article  Google Scholar 

  6. 6.

    Carlson, K., Jortner, B. S., Ehrich, M. (2000) Organophosphorus compound-induced apoptosis in SH-SY5Y human neuroblastoma cells. J. Toxicol. Appl. Pharmacol. 168, 102–113.

    CAS  Article  Google Scholar 

  7. 7.

    Caughlan, A., Newhouse, K., Namgung, U., Xia, Z. (2004) Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a. balance between P38 and ERK/JNK Map kinases. Toxicol. Sci. 78, 125–134.

    CAS  Article  Google Scholar 

  8. 8.

    Deshpande, S. S., Smith, C. D., Filbert, M. G. (1995) Assessment of primary neuronal culture as a. model for soman-induced neurotoxicity and effectiveness of memantine as a. neuroprotective drug. Arch. Toxicol. 14, 384–390.

    Article  Google Scholar 

  9. 9.

    Day, T., Greenfield, S. A. (2002) A. non-cholinergic trophic action of acetylcholinesterase on hip-pocampal neurons in vitro: molecular mechanisms. Neuroscience 111, 649–656.

    CAS  Article  Google Scholar 

  10. 10.

    Edson, S. R., Swanson, K. L., Aracava, Y., Goolsby, J. (1996) Paraoxon cholinesterase independent stimulation of transmitter release and selective block of ligand gated ion channels in cultured hip-pocampal neurons. J. Pharmacol. Exp. Ther 278, 1175–1187.

    Google Scholar 

  11. 11.

    Ellman, G. L., Courtney, D. K., Andres, V. J., Feather Stone, R. M. (1961) A. new and rapid colori-metric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95.

    CAS  Article  Google Scholar 

  12. 12.

    Ekshyyan, O., Aw, T. Y. (2004) Apoptosis in acute and chronic neurological disorders. Front. Bioscience 9, 1567–1576.

    CAS  Article  Google Scholar 

  13. 13.

    Griffiths, G. D. (1994) Toxicology 90, 11–27.

    CAS  Article  Google Scholar 

  14. 14.

    Jarvinen, A. W., Nordling, B. R., Henry, M. E. (1983) Chronic toxicity of dursban (chlorpyrifos) to the fathead minnow and the resultant acetylcholinesterase inhibition. Ecotoxicol. Environ. Saf. 7, 423–434.

    CAS  Article  Google Scholar 

  15. 15.

    Kaufer, D., Friedman, A., Seidman, S., Soreq, H. (1998) Acute stress facilitates long lasting changes in cholinergic gone expression. Nature 393, 373–377.

    CAS  Article  Google Scholar 

  16. 16.

    Lauder, J. M., Schambra, U. B. (1999) Morphogenetic roles of acetylcholine. Environ. Health Perspect. 107, 65–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    McDonough, J. H., Shih, T. M. (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci. Biobehav. Rev. 21, 559–579.

    CAS  Article  Google Scholar 

  18. 18.

    Marks, N., Berg, M. J., Guidotti, A., Saito, M. (1998) Activation of caspase-3 and apoptosis in cerebellar granule cells. J. Neurosci. Res. 52, 334–341.

    CAS  Article  Google Scholar 

  19. 19.

    Mousavi, M., Bednar, I., Nordberg, A. (2004) Selective changes in expression of different nicotinic receptor subtypes in brain and adrenal glands of mice carrying human mutated gene for APP or over expressing human acetylcholinestrase. Devi, neuroscience 22, 545–549.

    CAS  Article  Google Scholar 

  20. 20.

    Nakahara, K., Saito, H., Saito, T., Ito, M., Ohta, N., Sakai, N., Tezuka, N., Hiroi, M., Watanabe, H. (1997) Incidence of apoptotic bodies in membrane granulose of the patients participating in an in vitro fertilization program. Fertil Steril. 67, 297–303.

    Article  Google Scholar 

  21. 21.

    Poovala, V. S., Huang, H., Salahudeen, A. K. (1999) Role of reactive oxygen metabolites in organophosphate-Birdin-induced renal tubular cytotoxicity. J. Am. Soc. Nephrol. 10, 1746–1752.

    CAS  PubMed  Google Scholar 

  22. 22.

    Padilla, S., Marshal, R. S., Hunter, D. L., Oxendine, S., Moser, V. C., Southerland, S. B., Mailman, R. B. (2005) Neurochemical effects of chronic dietary and repeated high level acute exposure to Chlorpyrifos in rats. Toxicol. Sci. 88, 161–171.

    CAS  Article  Google Scholar 

  23. 23.

    Prendergast, M. A., Self, R. L., Smith, K. I., Ghayoumi, L., Mullins, M. M., Butler, R. (2007) Microtubule-associated targets in chlorpyrifos oxon hippocampal neurotoxicity. Neurosci. 146, 330–339.

    CAS  Article  Google Scholar 

  24. 24.

    Raff, M. C., Barres, B. A., Burne, I. F., Coles, H. S., Ishizaki, Y., Jacobson, M. D. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700.

    CAS  Article  Google Scholar 

  25. 25.

    Rosenstock, L., Keifer, M., Daniell, W. E., McConnel, R., Claypoole, K. (1991) Chronic nervous system effects of acute organophosphate pesticide intoxication. The pesticide health effects study group. Lancet 338, 223–227.

    CAS  Article  Google Scholar 

  26. 26.

    Rocha, E. S., Chebabo, S. R., Santos, M. D., Aracava, Y., Albuquerque, E. X. (1998) An analysis of low level doses of cholinesterase inhibitors in cultured neurons and hippocampal slices of rats. Drug and Chem. Toxicol. 21, 191–200.

    CAS  Article  Google Scholar 

  27. 27.

    Saleh, A. M., Vijayasarath, Y., Masoud, L., Kumar, A., Kambal, A. (2003) Paraoxon induces apop-tosis in EL4 cells via activation of mitochondrial pathways. Toxicol. Appl. Pharmacol. 190, 47–57.

    CAS  Article  Google Scholar 

  28. 28.

    Santo, H. R., Cintra, W. M., Aracava, Y., Maciel, C. M., Castro, N. G., Edson, X. (2004) Spine density and dendritic branching pattern of hippocampal CA1 pyramidal neurons in neonatal rats chronically exposed to the organophosphate paraoxon. Neurotoxicology 25, 481–494.

    Article  Google Scholar 

  29. 29.

    Stephens, R., Spurgeon, A., Calvert, I. A., Beach, I., Levy, L. S., Berry, H., Harrington, J. M. (1995) Neuropsychological effects of long term exposure to organophosphates in sheep. Dip. Lancet 345, 1135–1139.

    CAS  Article  Google Scholar 

  30. 30.

    Soreq, H., Seidman, S. (2001) Acetylcholinesterase - new roles for and old actor. Perspectives 2, 294–302.

    CAS  Google Scholar 

  31. 31.

    Suuronen, T., Kalehmainen, P., Salminen, A. (2000) Protective effect of L-deprenxl against apopto-sis induced by okadaic acid in cultured neuronal cells. J. Biochem. Pharma 59, 1559–1589.

    Google Scholar 

  32. 32.

    Sueyosh, Maehara, Ito (2001) Lysosphingolipid induced apoptosis of neuronal cells. J. Lipid Res. 42, 1197–1202.

    Google Scholar 

  33. 33.

    Shapira, M., Tur-kaspa, L., Bosgraaf, L., Livni, H., Grant, A. D., Grisaru, D., Korner, M., Ebstein, R. P., Soreq, H. (2000) A. transcription activating polymorphism in the AchE promoter associated with acute sensitivity to anti acetylcholinesterase. Human molecular genetics 9, 1773–1781.

    Article  Google Scholar 

  34. 34.

    Wang, T. H., Wang, H. S. (1999b) Apoptosis: overview and clinical significance. J. Formos. Med. Assoc. 98, 381–393.

    CAS  PubMed  Google Scholar 

  35. 35.

    Wu, X., Tian, E., Okagaki, P., Marini, A. M. (2005) Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons. J. Toxicol. Appl. Pharmacol. 208, 51–61.

    Google Scholar 

  36. 36.

    Yousefpour, M., Bahrami, F., Shahsavan, B., Khoshbaten, A., Asgari, A. (2006) Paraoxon-induced ultrastructural changes of rat cultured hippocampal cells in NB/B27. Toxicol. 217, 221–227.

    CAS  Article  Google Scholar 

Download references


Our great indebtedness to the grant supplier, the Research Center for Chemical Injuries of Baqyatallah University of Medical Science.

Author information



Corresponding author

Correspondence to M. Yousefpour.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Bahrami, F., Yousefpour, M., Mehrani, H. et al. Type of Cell Death and the Role of Acetylcholinesterase Activity in Neurotoxicity Induced by Paraoxon in Cultured Rat Hippocampal Neurons. BIOLOGIA FUTURA 60, 1–13 (2009). https://doi.org/10.1556/ABiol.60.2009.1.1

Download citation


  • Paraoxon
  • hippocampus
  • cell culture
  • apoptosis
  • cholinesterase activity