Acta Biologica Hungarica

, Volume 60, Issue 1, pp 1–13 | Cite as

Type of Cell Death and the Role of Acetylcholinesterase Activity in Neurotoxicity Induced by Paraoxon in Cultured Rat Hippocampal Neurons

  • F. Bahrami
  • M. YousefpourEmail author
  • H. Mehrani
  • L. Golmanesh
  • S. H. Sadraee
  • A. Khoshbaten
  • A. Asgari


Organophosphate (Ops) neurotoxicity is attributed both to its well-known cholinergic and non-cholinergic effects. In the present study we compared enzymatic and morphologic changes in neurons exposed to paraoxon during one day and one week. The effect of exposure time is important in neurotoxicity of Ops. The longer the exposure time is the more damage is observed in neurons, although there are few investigations about the effect in the post-exposure period. Hippocampal cells were obtained from rat neonates and cultured in Neurobasal/B27. Paraoxon at 50 and 100 μM were added. Inverted microscope and electron microscope were used to study cell morphology and Neutral Red staining was used to measure viability. We also assayed caspase-3 and (acetylcholinesterase) AChE activity. Hoechst staining was utilized to determine the type of cell death. Culture medium was replaced after 24 h in one-day group, however, tests were all carried out at the end of the first week in both group.

The results indicate that paraoxon reduced the viability in a dose-dependent manner. Our results do not confirm apoptosis in either group; it seems that the cell death in one-day exposure group was not AChE dependent. In conclusion, present data imply that the toxicity of paraoxon is both dose and duration dependent, which may even remain after the cessation of exposure.


Paraoxon hippocampus cell culture apoptosis cholinesterase activity 





Central nervous system




2,2’-dinitro 5,5’-diptio-dibenzoic acid


Enzyme linked immunosorbent assay


4-(2-hydroxyethyl)-1 -piperazineethanesulfonic acid


Neutral Red


N-methyl, D-aspartate




scanning electron microscopy


O-ethyl-S-[2(diisopropylamino) ethyl] methylphosphonothiolate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Our great indebtedness to the grant supplier, the Research Center for Chemical Injuries of Baqyatallah University of Medical Science.


  1. 1.
    Axelrad, J. C., Howard, C. V., McLean, W. G. (2003) The effects of acute pesticide on neuroblastoma cells chronically exposed to diazinon. Toxicology 185, 67–78.CrossRefGoogle Scholar
  2. 2.
    Bozzola, J. J., Russell, L. D. (1999) Electron microscopy (principle and techniques for biologist). Jones & Bartletts, Massachusetts, pp. 49–71.Google Scholar
  3. 3.
    Bigbee, J. W., Sharma, K. V., Gupta, J. J., Dupree, J. L. (1999) Morphogenetic role for acetylcholinesterase in axonal out growth during neural development. Environ. Health. Perspect. 107, 81–87.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bradford, M. M. (1976) A. rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Annual. Biochem. 72, 248–254.CrossRefGoogle Scholar
  5. 5.
    Crumpton, T. L., Seidler, F. J., Slotkin, T. A. (2000) Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Research 857, 87–98.CrossRefGoogle Scholar
  6. 6.
    Carlson, K., Jortner, B. S., Ehrich, M. (2000) Organophosphorus compound-induced apoptosis in SH-SY5Y human neuroblastoma cells. J. Toxicol. Appl. Pharmacol. 168, 102–113.CrossRefGoogle Scholar
  7. 7.
    Caughlan, A., Newhouse, K., Namgung, U., Xia, Z. (2004) Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a. balance between P38 and ERK/JNK Map kinases. Toxicol. Sci. 78, 125–134.CrossRefGoogle Scholar
  8. 8.
    Deshpande, S. S., Smith, C. D., Filbert, M. G. (1995) Assessment of primary neuronal culture as a. model for soman-induced neurotoxicity and effectiveness of memantine as a. neuroprotective drug. Arch. Toxicol. 14, 384–390.CrossRefGoogle Scholar
  9. 9.
    Day, T., Greenfield, S. A. (2002) A. non-cholinergic trophic action of acetylcholinesterase on hip-pocampal neurons in vitro: molecular mechanisms. Neuroscience 111, 649–656.CrossRefGoogle Scholar
  10. 10.
    Edson, S. R., Swanson, K. L., Aracava, Y., Goolsby, J. (1996) Paraoxon cholinesterase independent stimulation of transmitter release and selective block of ligand gated ion channels in cultured hip-pocampal neurons. J. Pharmacol. Exp. Ther 278, 1175–1187.Google Scholar
  11. 11.
    Ellman, G. L., Courtney, D. K., Andres, V. J., Feather Stone, R. M. (1961) A. new and rapid colori-metric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95.CrossRefGoogle Scholar
  12. 12.
    Ekshyyan, O., Aw, T. Y. (2004) Apoptosis in acute and chronic neurological disorders. Front. Bioscience 9, 1567–1576.CrossRefGoogle Scholar
  13. 13.
    Griffiths, G. D. (1994) Toxicology 90, 11–27.CrossRefGoogle Scholar
  14. 14.
    Jarvinen, A. W., Nordling, B. R., Henry, M. E. (1983) Chronic toxicity of dursban (chlorpyrifos) to the fathead minnow and the resultant acetylcholinesterase inhibition. Ecotoxicol. Environ. Saf. 7, 423–434.CrossRefGoogle Scholar
  15. 15.
    Kaufer, D., Friedman, A., Seidman, S., Soreq, H. (1998) Acute stress facilitates long lasting changes in cholinergic gone expression. Nature 393, 373–377.CrossRefGoogle Scholar
  16. 16.
    Lauder, J. M., Schambra, U. B. (1999) Morphogenetic roles of acetylcholine. Environ. Health Perspect. 107, 65–69.PubMedPubMedCentralGoogle Scholar
  17. 17.
    McDonough, J. H., Shih, T. M. (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci. Biobehav. Rev. 21, 559–579.CrossRefGoogle Scholar
  18. 18.
    Marks, N., Berg, M. J., Guidotti, A., Saito, M. (1998) Activation of caspase-3 and apoptosis in cerebellar granule cells. J. Neurosci. Res. 52, 334–341.CrossRefGoogle Scholar
  19. 19.
    Mousavi, M., Bednar, I., Nordberg, A. (2004) Selective changes in expression of different nicotinic receptor subtypes in brain and adrenal glands of mice carrying human mutated gene for APP or over expressing human acetylcholinestrase. Devi, neuroscience 22, 545–549.CrossRefGoogle Scholar
  20. 20.
    Nakahara, K., Saito, H., Saito, T., Ito, M., Ohta, N., Sakai, N., Tezuka, N., Hiroi, M., Watanabe, H. (1997) Incidence of apoptotic bodies in membrane granulose of the patients participating in an in vitro fertilization program. Fertil Steril. 67, 297–303.CrossRefGoogle Scholar
  21. 21.
    Poovala, V. S., Huang, H., Salahudeen, A. K. (1999) Role of reactive oxygen metabolites in organophosphate-Birdin-induced renal tubular cytotoxicity. J. Am. Soc. Nephrol. 10, 1746–1752.PubMedGoogle Scholar
  22. 22.
    Padilla, S., Marshal, R. S., Hunter, D. L., Oxendine, S., Moser, V. C., Southerland, S. B., Mailman, R. B. (2005) Neurochemical effects of chronic dietary and repeated high level acute exposure to Chlorpyrifos in rats. Toxicol. Sci. 88, 161–171.CrossRefGoogle Scholar
  23. 23.
    Prendergast, M. A., Self, R. L., Smith, K. I., Ghayoumi, L., Mullins, M. M., Butler, R. (2007) Microtubule-associated targets in chlorpyrifos oxon hippocampal neurotoxicity. Neurosci. 146, 330–339.CrossRefGoogle Scholar
  24. 24.
    Raff, M. C., Barres, B. A., Burne, I. F., Coles, H. S., Ishizaki, Y., Jacobson, M. D. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700.CrossRefGoogle Scholar
  25. 25.
    Rosenstock, L., Keifer, M., Daniell, W. E., McConnel, R., Claypoole, K. (1991) Chronic nervous system effects of acute organophosphate pesticide intoxication. The pesticide health effects study group. Lancet 338, 223–227.CrossRefGoogle Scholar
  26. 26.
    Rocha, E. S., Chebabo, S. R., Santos, M. D., Aracava, Y., Albuquerque, E. X. (1998) An analysis of low level doses of cholinesterase inhibitors in cultured neurons and hippocampal slices of rats. Drug and Chem. Toxicol. 21, 191–200.CrossRefGoogle Scholar
  27. 27.
    Saleh, A. M., Vijayasarath, Y., Masoud, L., Kumar, A., Kambal, A. (2003) Paraoxon induces apop-tosis in EL4 cells via activation of mitochondrial pathways. Toxicol. Appl. Pharmacol. 190, 47–57.CrossRefGoogle Scholar
  28. 28.
    Santo, H. R., Cintra, W. M., Aracava, Y., Maciel, C. M., Castro, N. G., Edson, X. (2004) Spine density and dendritic branching pattern of hippocampal CA1 pyramidal neurons in neonatal rats chronically exposed to the organophosphate paraoxon. Neurotoxicology 25, 481–494.CrossRefGoogle Scholar
  29. 29.
    Stephens, R., Spurgeon, A., Calvert, I. A., Beach, I., Levy, L. S., Berry, H., Harrington, J. M. (1995) Neuropsychological effects of long term exposure to organophosphates in sheep. Dip. Lancet 345, 1135–1139.CrossRefGoogle Scholar
  30. 30.
    Soreq, H., Seidman, S. (2001) Acetylcholinesterase - new roles for and old actor. Perspectives 2, 294–302.Google Scholar
  31. 31.
    Suuronen, T., Kalehmainen, P., Salminen, A. (2000) Protective effect of L-deprenxl against apopto-sis induced by okadaic acid in cultured neuronal cells. J. Biochem. Pharma 59, 1559–1589.Google Scholar
  32. 32.
    Sueyosh, Maehara, Ito (2001) Lysosphingolipid induced apoptosis of neuronal cells. J. Lipid Res. 42, 1197–1202.Google Scholar
  33. 33.
    Shapira, M., Tur-kaspa, L., Bosgraaf, L., Livni, H., Grant, A. D., Grisaru, D., Korner, M., Ebstein, R. P., Soreq, H. (2000) A. transcription activating polymorphism in the AchE promoter associated with acute sensitivity to anti acetylcholinesterase. Human molecular genetics 9, 1773–1781.CrossRefGoogle Scholar
  34. 34.
    Wang, T. H., Wang, H. S. (1999b) Apoptosis: overview and clinical significance. J. Formos. Med. Assoc. 98, 381–393.PubMedGoogle Scholar
  35. 35.
    Wu, X., Tian, E., Okagaki, P., Marini, A. M. (2005) Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons. J. Toxicol. Appl. Pharmacol. 208, 51–61.Google Scholar
  36. 36.
    Yousefpour, M., Bahrami, F., Shahsavan, B., Khoshbaten, A., Asgari, A. (2006) Paraoxon-induced ultrastructural changes of rat cultured hippocampal cells in NB/B27. Toxicol. 217, 221–227.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • F. Bahrami
    • 1
  • M. Yousefpour
    • 1
    Email author
  • H. Mehrani
    • 2
  • L. Golmanesh
    • 3
  • S. H. Sadraee
    • 4
  • A. Khoshbaten
    • 1
    • 2
  • A. Asgari
    • 1
    • 2
  1. 1.Department of Physiology and BiophysicsBaqyatallah University of Medical ScienceTehranIran
  2. 2.Research Center for Chemical InjuriesBaqyatallah University of Medical ScienceTehranIran
  3. 3.Research Center for Molecular BiologyBaqyatallah University of Medical ScienceTehranIran
  4. 4.Department of Anatomy and HistologyBaqyatallah University of Medical ScienceTehranIran

Personalised recommendations