Advertisement

Acta Biologica Hungarica

, Volume 59, Supplement 2, pp 13–22 | Cite as

How Messengers Modulate the Shifting of Spontaneously Generated Action Potential Into Bursts of Potentials in Central Snail Neuron?

  • M. C. TsaiEmail author
Article

Abstract

How messengers modulate the shifting of spontaneously generated action potential into bursts of potentials (BoP) is studied electrophysiologically and biochemically in RP 1 and 4 neurons of the African snail, Achatina fulica Ferussac using d- and l-amphetamine (Amp) as modulator. The stereospecific effects, extracellular and intracellular ionic effects, messenger related to enzymatic effects and membrane ionic currents effects on BoP elicited by Amp are studied. The roles of organelles, such as mitochondria, protein syntheis related endoplasmic-reticulum, on the BoP are also tested. The messengers modulated the BoP are discussed.

Keywords

Amphetamine bursts of potentials messengers ionic current cAMP protein synthesis inhibitor calcium image modulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, D. J., Smith, S. J., Thompson, S. H. (1980) Ionic currents in molluscan soma. Annu. Rev. Neurosci. 3, 141–167.CrossRefGoogle Scholar
  2. 2.
    Arvanov, V. L., Chen, R. C., Chen, Y. H., Chang, Y. C., Liou, H. H., Arvanov, V. A., Tsai, M. C. (1994) Modulation of pentylenetetrazol induced bursting activity by elelctrogenic Na pump. Asia: Pacific. J. Pharmacol. 9, 37–42.Google Scholar
  3. 3.
    Cooper, D. C. (2002) The significance of action potential bursting in the brain reward circuit. Neurochem. Int. 41, 333–340.CrossRefGoogle Scholar
  4. 4.
    Duchen, M. R. (2000) Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529 (Pt 1), 57–68.CrossRefGoogle Scholar
  5. 5.
    Lee, I. N., Chen, C. H., Sheu, J. C., Lee, H. S., Huang, G. T., Chen, D. S., Yu, C. Y., Wen, C. L., Lu, F. J., Chow, L. P. (2006) Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach. Proteomic. 6, 2865–2873.CrossRefGoogle Scholar
  6. 6.
    Lee, I. N., Chen, C. H., Sheu, J. C., Lee, H. S., Huang, G. T., Yu, C. Y., Lu, F. J., Chow, L. P. (2005) Identification of human hepatocellular carcinoma-related biomarkers by two-dimensional difference gel electrophoresis and mass spectrometry. Proteome Res. 4, 2062–2069.CrossRefGoogle Scholar
  7. 7.
    Lin, C. H., Tsai, M. C. (2005) The modulation effects of d-amphetamine and procaine on the spontaneously generated action potentials in the central neuron of snail, Achatina fulica Ferussac. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 141, 58–68.Google Scholar
  8. 8.
    Lin, C. H., Tsai, M. C. (2003) D-amphetamine-elicited action potential bursts in central snail neurons: role of second messenger systems. J. Formos. Med. Assoc. 102, 394–403.PubMedGoogle Scholar
  9. 9.
    Lin, C. H., Wu, C. L., Lin, M. S., Liu, M. C., Lin, P. J., Tsai, M. C. (2005) Effects of 2,3-butanedione monoxime on induction of action potential bursts in central snail neurons: direct and indirect modulations of ionic currents. Pharmacolog. 73, 57–69.Google Scholar
  10. 10.
    Lin, C. K., Lin, P. J., Chen, I. M., Chen, I. H., Lin, P. L., Zhuravlev, V. L., Tsai, M. C. (2006) Seizure discharges induced by amphetamine in neuron of african snail Achatina fulica: effects of phosphodiesterase inhibitors. Zh: Evol. Biokhim. Fiziol. 42, 134–139.Google Scholar
  11. 11.
    Macdonald, R. L., Kelly, K. M. (1995) Antiepileptic drug mechanisms of action. Epilepsia: 36 (Suppl. 2), S2–12.CrossRefGoogle Scholar
  12. 12.
    McCormick, D. A., Contreras, D. (2001) On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846.CrossRefGoogle Scholar
  13. 13.
    Milligan, J. F., Groebe, D. R., Witherell, G. W., Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucl. Acids Res. 15, 8783–8798.CrossRefGoogle Scholar
  14. 14.
    Susswein, A. J., Hurwitz, I., Thorne, R., Byrne, J. H., Baxter, D. A. (2002) Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron. J. Neurophysiol. 87, 2307–2323.CrossRefGoogle Scholar
  15. 15.
    Tsai, M. C., Chen, Y. H. (1995) Bursting firing of action potential in central snail neuron elicited by d-amphetamine: role of electrogenic sodium pump. Comp. Biochem. Physiol. 111c, 131–141.Google Scholar
  16. 16.
    Tsai, M. C., Chen, Y. H., Huang, S. S. (2000) Amphetamine elicited potential changes in vertebrate and invertebrate central neurons. Acta Biol. Hung. 51, 275–286.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Departments of Pharmacology, College of MedicineNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations