Effects of Hyperbaric Oxygenation on Cultured Barley Embryos


Changes in relative water content (RWC), lipid peroxidation, proline and antioxidant system in relation to the tolerance to oxidative stress enzymes mediated high pressure were investigated in Hordeum vul-gare L. cv. Tokak. For this purpose, mature embryos cultured on MS media were treated in a hyperbaric oxygenation chamber (approx. 59.06 feets, 2 kp/cm2) with pure oxygen for 60 minutes/day for a growth period of ten days in a plant growth chamber. Constitutive activities of SOD, APOX, GR and POX were higher in hyperbaric oxygenated (HBO) explants, being 96.07%, 28.57%, 77.77% and 54.14% for the 5th days; 95.78%, 40%, 37.5%, and 94.98% for the 10th days of culture, respectively, than in the control plants. Increase in SOD activity was also shown on polyacrilamide gel electrophoresis on the 10th day of application. Proline accumulation was increased in HBO-treated explants both on the 5th days (85.71%) and 10th days (37.14%) of treatment. MDA content was found to be higher in HBO treated explants both on the 5th (53.84%) and 10th (59.83%) days of culture.



ascorbate peroxidase




glutathione reductase


hyperbaric oxygenation




Murashige and Skoog medium




relative water content


superoxide dismutase


  1. 1.

    Acar, O., Türkan, L., Özdemir, F. (2001) Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiol. Plant. 3, 351–356.

    Google Scholar 

  2. 2.

    Al-Karaki, G. N., Clark, R. B., Sullivan, C. Y. (1996) Phosphorus nutrition and water stress effects on proline in sorghum and bean. J. Plant Physiol. 148, 745–751.

    CAS  Google Scholar 

  3. 3.

    Alscher, R. G. (1989) Biosynthesis and antioxidant properties of glutathione in plants. Physiol. Plant. 77, 457–464.

    CAS  Google Scholar 

  4. 4.

    Asada, K. (1992) Ascorbate peroxidase-α hydrogen scavenging enzyme in plants. Physiol. Plant. 85, 235–241.

    CAS  Google Scholar 

  5. 5.

    Aspinall, D., Paleg, L. G. (1981) Proline accumulation physiological aspects. In: Paleg, L., Aspinall, D. The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press. Sidney, pp. 215–228.

    Google Scholar 

  6. 6.

    Avecedo, E. (1987) Gas exchange of barley and wheat genotypes under drought. In: Creal Improvement Program Annual Report. ICARDA, Aleppo, Syria, pp. 101–116.

    Google Scholar 

  7. 7.

    Aydın, A., Orhan, H., Sayal, A., Özata, M., Şahin, G., Işımer, A. (2001) Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin. Biochem. 34, 64–70.

    Google Scholar 

  8. 8.

    Badiani, M., Biasi, M. G., Colognola, M., Artemi, F. (1990) Catalase, peroxidase and superoxide dis-mutase activities in seedlings submitted to increasing water deficit. Agrochemica, 34, 90–102.

    CAS  Google Scholar 

  9. 9.

    Baisak, R., Rana, D., Acharya, P. B. B., Kar, M. (1994) Alteration in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol. 35, 489–495.

    CAS  Google Scholar 

  10. 10.

    Barron, M. C., De-Mejia, E. G. (1998) Comparative study of enzymes related to proline metabolism in tepary bean (Phaseolus acutifolius) and common bean (Phaseolus vulgaris) under drought and irrigated conditions. Plant Food Human Nutr. 52, 119–132.

    CAS  Google Scholar 

  11. 11.

    Bates, L. S., Waldren, R. P., Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205–207.

    CAS  Google Scholar 

  12. 12.

    Beauchamps, C., Fridovich, I. (1971) Superoxide dismutase: improved assays and applicable to acry-lamide gels. Anal. Biochem. pp. 248–254.

    Google Scholar 

  13. 13.

    Bergmeyer, N. (1970) Methoden der enzymatischen Analyse. Vol. 1. Akademie Verlag, Berlin.

    Google Scholar 

  14. 14.

    Blumm, A. (1988) Plant Breeding for Stress Environments. CRC Press, Boca Raton, F. L.

    Google Scholar 

  15. 15.

    Bor, M., Ozdemir, F., Türkan, İ (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. Plant Sci. 164, 77–84.

    CAS  Google Scholar 

  16. 16.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  Google Scholar 

  17. 17.

    Ceccarelli, S., Grando, S., Impiglia, A. (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 103, 307–318.

    Google Scholar 

  18. 18.

    Dennog, C., Radermacher, P., Barnett, A. Y., Speit, G. (1999) Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat. Res. 428, 83–89.

    CAS  PubMed  Google Scholar 

  19. 19.

    Edreva, A. (2005) Generation and scavenging of reactive oxygen species in chloroplast: a submole-cular approach. Agriculture, Ecosystem and Environment 106, 119–133.

    CAS  Google Scholar 

  20. 20.

    Eken, A., Aydın, A., Sayal, A., Üstündağ, A., Duydu, Y., Dündar, K. (2005) The effects of hyperbaric oxygen treatment on oxidative stress and SCE frequencies in humans. Clinical Biochemistry 38, 1133–1137.

    CAS  PubMed  Google Scholar 

  21. 21.

    Fadzilla, N. M., Finch, R. P., Burdon, R. H. (1997) Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J. Exp. Bot. 48, 325–331.

    CAS  Google Scholar 

  22. 22.

    Foyer, C. H., Halliwell, B. (1976) Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133, 21–25.

    CAS  PubMed  Google Scholar 

  23. 23.

    Fridovich, I. (1986) Biological effects of superoxide radicals. Arach. Biochem. Biophys. 247, 1–11.

    CAS  Google Scholar 

  24. 24.

    Fu, J., Huang, B. (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45, 105–114.

    CAS  PubMed  Google Scholar 

  25. 25.

    Gamble, P. E., Burke, J. J. (1984) Effect of water stress on the chloroplast antioxidant system 1. Alterations in glutathione reductase activity. Plant Physiol. 76, 615–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gueta-Dehan, Y., Yaniv, Z., Zilinskas, B. A., Ben-Hayyim, G. (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203, 460–469.

    Google Scholar 

  27. 27.

    Gus’kov, E. P., Dvorkina, R. M., Goncharenko, I. I. (1982) Effect of hyperbaric oxygenation on the mitosis of plant root cells. Tsilogia 24, 257–263.

    Google Scholar 

  28. 28.

    Halliwell, B. (1987) Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplast. Chem Phys. Lipids 44, 327–340.

    CAS  Google Scholar 

  29. 29.

    Hare, P. D., Cress, W. A. (1999) Proline synthesis and degradation a model system foe eluciding stress-related signal transduction. J. Exp. Bot. 50, 413–434.

    CAS  Google Scholar 

  30. 30.

    He, C., Davies, F. T., Lacey, R. E., Drew, M. C., Brown, D. L. (2003) Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat. J. Plant Physiol. 160, 1341–1350.

    CAS  PubMed  Google Scholar 

  31. 31.

    Hernandez, J. A., Olmos, E., Corpas, F. J., Sevilla, F., del Rio, L. A. (1995) Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci. 105, 151–167.

    CAS  Google Scholar 

  32. 32.

    Jain, M., Mathur, G., Koul, S., Sarin, N. B. (2001) Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Report 20, 463–468.

    CAS  Google Scholar 

  33. 33.

    Jeffrey, T. R., Corey, K. A., Paul, A. L., Ferl, R. J., Wheeler, R.M., Schuerger, A. C. (2006) Exposure of Arabidopsis thaliana to hyperbaric environments: implications fot low-pressure bioregenerative life support systems for human exploration missions and terrafroming on mars. Astrobiology 6, 851–866.

    Google Scholar 

  34. 34.

    Luna, M., Badiani, M., Felice, M., Artemi, F., Germanni, F. (1985) Selective enzyme inactivation under water stress in maize (Zea mays L.) and wheat (Triticum aestivum L.) seedlings. Environ. Exp. Bot. 25, 153–156.

    CAS  Google Scholar 

  35. 35.

    Madhava, R. K. V., Sresty, T. V. S. (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157, 113–128.

    Google Scholar 

  36. 36.

    Mashkina, E., Osatov, A., Danilenko, V., Kolokolova, N., Gus’kov, E. (2006) Responses of sunflower chlorophyll mutants to increased temperature and oxidative burst. Russian Journal of Plant Physiology 53, 205–210.

    CAS  Google Scholar 

  37. 37.

    Murashige, T., Skoog, F. A. (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plantarum 15, 473–497.

    CAS  Google Scholar 

  38. 38.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.

    CAS  Google Scholar 

  39. 39.

    Nayyar, H., Gupta, D. (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Environmental Botany 58, 106–113.

    CAS  Google Scholar 

  40. 40.

    Pandey, P. K. (1982) Free proline accumulation in response to water stress in wheat seedling. Curr Sci. 51, 141–143.

    CAS  Google Scholar 

  41. 41.

    Pastori, G. M., Trippi, V. S. (1993) Antioxidative protection in drought-resistance maize strains during leaf senescence. Physiol. Plant 87, 227–231.

    CAS  Google Scholar 

  42. 42.

    Rothfuss, A., Stahl, W., Radermacher, P., Speit, G. (1999) Evaluation of mutagenic effects of hyperbaric oxygen (HBO) in vitro. Environ. Mol. Mutagen. 34, 291–296.

    CAS  PubMed  Google Scholar 

  43. 43.

    Qurtacci, M. F., Navarri-Izzo, F. (1992) Water stress and free radical mediated changes in sunflower seedlings. J. Plant Physiol. 139, 621–625.

    Google Scholar 

  44. 44.

    Rabinowitch, H. D., Fridovih, I. (1983) Superoxide radical, superoxide dismutase and oxygen toxicity in plants. Phytochem. Photobiol. 188, 206–213.

    Google Scholar 

  45. 45.

    Sairam, R. K., Shukla, D. S., Saxena, D. C. (1997) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plantarum 40, 357–364.

    CAS  Google Scholar 

  46. 46.

    Scandalios, J. G. (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sgherri, C. L. M., Maffei, M., Navari-Izzo, F. (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J. Plant Physiol. 273–279.

    Google Scholar 

  48. 48.

    Shang, F., Gong, X., Egtesadi, S. (2002) Vitamin C prevents hyperbaric oxygen induced growth retardation and lipid peroxidation and attenuates the oxidation-induced up-regulation of glutathione in guinea pigs. J. Nutr. Biochem. 13, 307–313.

    CAS  PubMed  Google Scholar 

  49. 49.

    Smart, R. E., Bingham, G. E. (1974) Rapid estimates of relative water content. Plant Physiol. 53, 258–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Smirnoff, N. (1996) The function and metabolism of ascorbic acid in plants. Ann. Bot. 78, 661–669.

    CAS  Google Scholar 

  51. 51.

    Speit, G., Dennog, C., Radermacher, P., Rothfuss, A. (2002) Genotoxicity of hyperbaric oxygen. MutatRes. 2, 1–9.

    Google Scholar 

  52. 52.

    Wood, Z. (2002) Hyperbaric oxygen in the management of chronic wounds. Br. J. Nursing 11, 17–24.

    Google Scholar 

  53. 53.

    Zaifnejad, M., Clark, R. B., Sullivan, C. Y. (1997) Aluminum and water stress effects on growth and proline of Sorghum. J. Plant Physiol. 150, 338–344.

    CAS  Google Scholar 

  54. 54.

    Zhang, J., Kirkham, M. B. (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132, 361–373.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. Arican.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Arican, E., Gozukirmizi, N. Effects of Hyperbaric Oxygenation on Cultured Barley Embryos. BIOLOGIA FUTURA 59, 453–464 (2008). https://doi.org/10.1556/ABiol.59.2008.4.6

Download citation


  • Antioxidant enzymes
  • lipid peroxidation
  • Hordeum vulgare L
  • hyperbaric oxygenation
  • oxidative stress
  • relative water content