Acta Biologica Hungarica

, Volume 59, Issue 4, pp 385–402 | Cite as

Biological Activity and Identification of Neuropeptides in the Neurosecretory Complexes of the Cabbage Pest Insect, Mamestra Brassicae (Noctuidae; Lepidoptera)

  • Adrien FónagyEmail author
  • Heather G. Marco
  • Simone König
  • G. Gäde


The need for more environmentally sound strategies of plant protection has become a driving force in physiological entomology to combat insect pests more efficiently. Since neuropeptides regulate key biological processes, these “special agents” or their synthetic analogues, mimetics, agonists or antagonists may be useful tools. We examined brain-suboesophageal ganglia and corpora cardiaca-corpora allata complexes of the cabbage moth, Mamestra brassicae, in order to obtain clues about possible peptide candidates which may be appropriate for the biological control of this pest. With the aid of bioassays, reversed phase high performance liquid chromatography, and mass spectrometry, five neuropeptides were unequivocally identified and the presence of a further three were inferred solely by comparing mass spectra with known peptides. Only one neuropeptide with adipokinetic capability was identified in M. brassicae. Data from the established homologous bioassay indicated that the cabbage moths rely on a lipid-based metabolism which is aided by an adipokinetic hormone (viz. Manse-AKH) that had previously been isolated in many different lepidopterans. Other groups of neuropeptides identified in this study are: FLRFamides, corazonin, allatostatin and pheromonotropic peptide.


Mamestra brassicae neuropeptides of intermediary metabolism myoactive neuropeptides RP-HPLC MALDI-ToF-MS ESI-MS/MS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altstein, M., Ben-Aziz, O., Schefler, I., Zeltser, I., Gilon, C. (2000) Advances in the application of neuropeptides in insect control. Crop Prot. 19, 547–555.Google Scholar
  2. 2.
    Audsley, N., Duve, H., Thorpe, A., Weaver, R. J. (2000) Morphological and physiological comparisons of two types of allatostatins in the brain and retrocerebral complex of the tomato moth, Lacanobia oleracea. J. Comp. Neurol. 424, 37–46.PubMedGoogle Scholar
  3. 3.
    Audsley, N., Weaver, R. (2003) A comparison of the neuropeptides from the retrocerebral complex of adult male and female Manduca sexta using MALDI-TOF mass spectrometry. Regul. Peptides 116, 127–137.Google Scholar
  4. 4.
    Audsley, N., Weaver, R. (2003) Identification of neuropeptides from brains of larval Manduca sexta and Lacanobia oleracea using MALDI-TOF mass spectrometry and post source decay. Peptides 24, 1465–1474.PubMedGoogle Scholar
  5. 5.
    Audsley, N., Weaver, R. (2006) Analysis of peptides in the brain and corpora cardiaca-corpora alla-ta of the honey bee, Apis mellifera using MALDI-TOF mass spectrometry. Peptides 27, 512–520.PubMedGoogle Scholar
  6. 6.
    Baggerman, G., Huybrechts, J., Clynen, E., Hens, K., Harthoorn, L., Van der Horst, D., Poulos, C, De Loof, A., Schoofs, L. (2002) New insights in Adipokinetic hormone (AKH) precursor processing in Locusta migratoria obtained by capillary liquid chromatography-tandem mass spectrometry. Peptides 23, 635–644.PubMedGoogle Scholar
  7. 7.
    Cerstiaens, A., Benfekih, L., Zouiten, H., Verhaert, P., De Loof, A., Schoofs, L. (1999) Led-NPF-1 stimulates ovarian development in locusts. Peptides 20, 39–44.Google Scholar
  8. 8.
    Duve, H., Anders, H., Johnsen, A. H., Maestro, J.-L., Alan, G., Scott, A. G., Winstanley, D., Davey, M., East, P. D., Thorpe, A. (1997) Lepidopteran peptides of the allatostatin superfamily. Peptides 18, 1301–1309.Google Scholar
  9. 9.
    Fónagy, A., Teal, P., Meredith, J., Körmendy, C., Tumlinson, J. (1998) Partial identification of anew pheromonotropic peptide from Mamestra brassicae. Annals New York Acad. Sci. 839, 488–490.Google Scholar
  10. 10.
    Gäde, G. (1980) Further characteristics of adipokinetic and hyperglycaemic factor(s) of stick insects. J. Insect Physiol. 26, 351–360.Google Scholar
  11. 11.
    Gäde, G. (1985) Isolation of hypertrehalosaemic factors I and II from the corpus cardiacum of the Indian stick insect, Carausius morosus, by reversed-phase high performance liquid chromatography and amino acid composition of factor II. Biol. Chem. Hoppe-Seyler 366, 195–199.PubMedGoogle Scholar
  12. 12.
    Gäde, G. (1990) Structure-function studies on hypertrehalosemic and adipokinetic hormones: activity of naturally occurring analogues and some N- and C-terminal modified analogues. Physiol. Entomol. 15, 299–316.Google Scholar
  13. 13.
    Gäde, G. (1991) A unique charged tyrosine-containing member of the adipokinetic hormone/red-pigment-concentrating hormone peptide family isolated and sequenced from two beetle species. Biochem. J. 275, 671–677.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gäde, G. (1997) The explosion of structural information on insect neuropeptides. In: Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, C. (eds) Progress in the Chemistry of Organic Natural Products 71, Springer, Wien, New York. pp. 1–128.Google Scholar
  15. 15.
    Gäde, G. (2004) Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu. Rev. Entomol. 49, 93–113.PubMedGoogle Scholar
  16. 16.
    Gäde, G., Goldsworthy, G. J. (2003) Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Manag. Sci. 59, 1063–1075.PubMedGoogle Scholar
  17. 17.
    Gäde, G., Hoffmann, K.-H. (2005) Neuropeptides regulating development and reproduction in insects. Physiol. Entomol. 30, 103–121.Google Scholar
  18. 18.
    Gäde, G., Marco, H. G. (2006) Structure, function and mode of action of select arthropod neuropeptides. In: Atta-ur-Rahman (ed.) Studies in Natural Products Chemistry. Elsevier, Amsterdam, Vol. 33, pp. 69–139.Google Scholar
  19. 19.
    Gäde, G., Goldsworthy, G. J., Kegel, G., Keller, R. (1984) Single step purification of locust adipokinetic hormones I and II by reversed-phase high-performance liquid chromatography, and amino-acid composition of the hormone II. Hoppe-Seyler’s Z. Physiol. Chem. 365, 393–398.PubMedGoogle Scholar
  20. 20.
    Holman, G. M., Cook, B. J., Nachman, R. J. (1986) Isolation, primary structure and synthesis of leu-comyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp. Biochem. Physiol. 85C, 329–333.Google Scholar
  21. 21.
    Holman, G. M., Nachman, R. J., Schoofs, L., Hayes, T. K., Wright, M. S., De Loof, A. (1991) The Leucophaea maderae hindgut preparation: a rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem. 21, 107–112.Google Scholar
  22. 22.
    Huybrechts, J., Verleyen, P., Schoofs, L. (2005) Mass spectrometric analysis of head ganglia and neuroendocrine tissue of larval Galleria mellonella (Arthropoda, Insecta). J. Mass Spectrom. 40, 271–276.PubMedGoogle Scholar
  23. 23.
    Iglesias, F., Jacquin-Joly, E., Marco, M. R, Camps, F., Fabrias, G. (1999) Temporal distribution of PBAN like immunoreactivity in the hemolymph of Mamestra brassicae females in relation to sex pheromone production and calling behavior. Arch. Insect Biochem. Physiol. 40, 80–87.Google Scholar
  24. 24.
    Jacquin-Joly, E., Burnet, M., Francois, M. C, Ammar, D., Nagnan-le Meillour, P., Descoins, C. (1998) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of Mamestra brassicae: A new member of the PBAN family. Insect Biochem. Mol. Biol. 28, 251–258.PubMedGoogle Scholar
  25. 25.
    Jaffe, H., Raina, A. K., Riley, C. T., Fraser, B. A., Bird, T. G., Tseng, C.-M., Zhang, Y.-S., Hayes, D. K. (1988) Isolation and primary structure of a neuropeptide hormone from Heliothis zea with hypertrehalosemic and adipokinetic activities. Biochem. Biophys. Res. Commun. 155, 344–350.PubMedGoogle Scholar
  26. 26.
    Jansons, I. S., Cusson, M., McNeil, J. N., Tobe, S. S., Bendena, W. G. (1996) Molecular characterization of a cDNA from Pseudaletia unipuncta encoding the Manduca sexta allatostatin peptide (Mas-AST). Insect Biochem. Mol. Biol. 26, 767–773.PubMedGoogle Scholar
  27. 27.
    Jermy, T., Balázs, K. (eds) (1993) Növényvédelmi Állattan [Plant protection entomology]. Vol. 4/A, Akadémiai Kiadó, Budapest, pp. 1–343 (In Hungarian).Google Scholar
  28. 28.
    Kingan, T. G., Teplow, D. B., Phillips, J. M., Riehm, J. P., Ranga Rao, K., Hildebrand, J. G., Homberg, U., Kammer, A. E., Jardine, I., Griffin, P. R., Hunt, D. F. (1990) A new peptide in the FMRFamide family isolated from the CNS of the hawkmoth, Manduca sexta. Peptides 11, 849–856.PubMedGoogle Scholar
  29. 29.
    Köllisch, G. V., Verhaert, P. D., Lorenz, M. W., Kellner, R., Gäde, G., Hoffmann, K. H. (1999) Structure elucidation of Mas-AKH as the major adipokinetic hormone in the butterfly Vanessa car-dui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 96, 309–315.Google Scholar
  30. 30.
    Köllisch, G. V., Lorenz, M. W., Kellner, R., Verhaert, P. D., Hoffmann, K. H. (2000) Structure elucidation and biological activity of an unusual adipokinetic hormone from corpora cardiaca of the butterfly, Vanessa cardui. Eur. J. Biochem. 267, 5502–5508.PubMedGoogle Scholar
  31. 31.
    König, S., Albers, C., Gäde, G. (2005) Mass spectral signature of insect adipokinetic hormones. Rapid Commun. Mass Spectrom. 19, 3021–3024.PubMedGoogle Scholar
  32. 32.
    Kramer, S. J., Toschi, A., Miller, C. A., Kataoka, H., Quistad, G. B., Li, J. P., Carney, R. L., Schooley, D. A. (1991) Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA. 88, 9458–9462.PubMedGoogle Scholar
  33. 33.
    Matsumoto, S., Ozawa, R., Nagamine, T., Kim, G.-H., Uchiumi, K., Shono, T., Mitsui, T. (1995) Intracellular transduction in the regulation of pheromone biosynthesis of the silkworm, Bombyx mori: suggested involvement of calmodulin and phosphoprotein phosphatase. Biosci. Biotech. Biochem. 59, 560–562.Google Scholar
  34. 34.
    Nachman, R. J., Teal, P. E. A., Strey, A. (2002) Enhanced oral availability/pheromonotropic activity of peptidase-resistant topical amphiphilic analogs of pyrokinin/PBAN insect neuropeptides. Peptides 23, 2035–2043.PubMedGoogle Scholar
  35. 35.
    Nagy, B. (1970) Rearing of the European corn borer (Ostrinia nubilalis Hbn.) on a simplified artificial diet. Acta Phytopathol. Hung. Acad. Sci. 5, 73–79.Google Scholar
  36. 36.
    Nässel, D. A. (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Progr. Neurobiol. 68, 1–84.Google Scholar
  37. 37.
    Predel, R., Wegener, C., Russel, W. K., Tichy, S. E., Russel, D. H., Nachman, R. J. (2004) Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: amass spec-trometric survey of peptides from individual flies. J. Comp. Neurol. 474, 379–392.PubMedGoogle Scholar
  38. 38.
    Predel, R., Neupert, S., Russell, W. K., Scheibner, O., Nachman, R. J. (2007) Corazonin in insects. Peptides 28, 3–10.PubMedGoogle Scholar
  39. 39.
    Schoofs, L., Holman, G. M., Nachman, R. N., Hayes, T. K., De Loof, A. (1994) Structure, function, and distribution of insect myotropic peptides. In: Davey, K. D., Peter, R. E., Tobe, S. S. (eds) Perspectives in Comparative Endocrinology. Natl. Res. Councl. Can. Ottawa, pp. 155–165.Google Scholar
  40. 40.
    Veenstra, J. A. (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Letters, 250, 231–234.PubMedGoogle Scholar
  41. 41.
    Ziegler, R., Eckart, K., Schwarz, H., Keller, R. (1985) Amino acid sequence of Manduca sexta adipokinetic hormone elucidated by combined fast atom bombardment (FAB)/tandem mass spectrometry. Biochem. Biophys. Res. Commun. 133, 337–342.PubMedGoogle Scholar
  42. 42.
    Ziegler, R., Eckart, K., Law, J. H. (1990) Adipokinetic hormone controls lipid metabolism in adults and carbohydrate metabolism in larvae of Manduca sexta. Peptides 11, 1037–1040.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Adrien Fónagy
    • 1
    Email author
  • Heather G. Marco
    • 2
  • Simone König
    • 3
  • G. Gäde
    • 2
  1. 1.Department of Ecotoxicology and Environmental AnalysisPlant Protection Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Zoology DepartmentUniversity of Cape TownRondeboschSouth Africa
  3. 3.Integrated Functional Genomics, Interdisciplinary Centre for Clinical Research, Medical FacultyUniversity of MünsterMünsterGermany

Personalised recommendations