Acta Biologica Hungarica

, Volume 59, Issue 3, pp 357–363 | Cite as

The Glutathione Response to Salt Stress in the Thermophilic Fungus, Thermomyces Lanuginosus

  • Helene Friborg Jepsen
  • I. Pocsi
  • B. JensenEmail author
Open Access


In order to investigate the role of glutathione in response to salt stress in the thermophilic fungus. Thermomyces lanuginosus, the biomass and the intracellular pool of protein and the glutathione + glutathione disulphid (GSH + GSSG) was measured for four days in a medium with NaCl or KCl added and in the basal medium. Due to the osmotic and ionic stress imposed by the salts, the growth o. T. lanuginosus was delayed and the inhibitory effect of KCl exceeded that of NaCl. Glutathione seemed to be involved in the response o. T. lanuginosus towards high concentrations of salt, as the level of stress was negatively correlated with the amount of total glutathione. Salt stress did not result in an increased intracellular protein production. GSH accumulated while nutrients were abundant and were subsequently degraded later, suggesting that nutrients stored in GSH are used when the medium is depleted.


Ionic stress osmotic stress growth protein concentration GSH 


  1. 1.
    Anderson, M. E. (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555.CrossRefGoogle Scholar
  2. 2.
    Arnesen, S., Eriksen, S. H., Olsen, J., Jensen, B. (2002) De novo synthesis is involved in production of extracellular a-amylase activity fro. Thermomyces lanuginosus in stationary phase. Mycol. Res. 106, 345–348.CrossRefGoogle Scholar
  3. 3.
    Bannister, S. J., Wittrup, K. D. (2000) Glutathione excretion in response to heterologous protein secretion i. Saccharomyces cerevisiae. Biotechnol. Bioeng. 68, 389–395.CrossRefGoogle Scholar
  4. 4.
    Blomberg, A., Adler, L. (1993) Tolerance of fungi to NaCl. In: Jennings, D. H. (ed.). Stress Tolerance of Fungi. Marcel Dekker Incorporated, New York.Google Scholar
  5. 5.
    Coote, P. J., Cole, M. B., Jones, M. V. (1991) Induction of increased thermotolerance i. Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J. Gen. Microbiol. 137, 1701–1708.CrossRefGoogle Scholar
  6. 6.
    Emri, T., Pócsi, I., Szentirmai, A. (1997) Phenoxyacetic acid induces glutathione-dependent detoxification and depletes the glutathione pool i. Penicillium chrysogenum. J. Basic Microbiol. 37, 181–186.CrossRefGoogle Scholar
  7. 7.
    Emri, T., Pócsi, I., Szentirmai, A. (1999) Analysis of the oxidative stress response o. Penicillium chrysogenum to menadione. Free Rad. Res. 30, 125–132.CrossRefGoogle Scholar
  8. 8.
    Emri, T., Sami, L., Szentirmai, A., Pöcsi, I. (1999) Co-ordination of the nitrate and nitrite assimilation, the glutathione and free radical metabolism, and the pentose phosphate pathway i. Penicillium chrysogenum. J. Basic Microbiol. 39, 109–115.CrossRefGoogle Scholar
  9. 9.
    Finley, D., Ozkaynak, E., Varshavsky, A. (1987) The yeast polyubiqutin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046.CrossRefGoogle Scholar
  10. 10.
    Flattery-O’Brien, J. A., Grant, C. M., Dawes, I. E. (1997) Stationary-phase regulation of th. Saccharomyces cerevisiae SOD2 gene is dependent on the additive effects of HAP2/3/4/5- and STRE-bind-ing elements. Mol. Microbiol. 23, 303–312.CrossRefGoogle Scholar
  11. 11.
    Grant, C. M., Maclver, F. H., Dawes, I. W. (1996) Stationary phase induction o. GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeas. Saccharomyces cerevisiae. Mol. Microbiol. 22, 739–746.CrossRefGoogle Scholar
  12. 12.
    Grant, C. M, Luikenhuis, S., Beckhouse, A., Soderbergh, M., Dawes, I. W. (2000) Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeas. Saccharomyces cerevisiae. Biochim. Biophys. Acta 1490, 33–42.CrossRefGoogle Scholar
  13. 13.
    Izawa, S., Inoue, Y., Kimura, A. (1995) Oxidative stress response in yeast: effect of glutathione on adaption to hydrogen peroxide stress i. Saccharomyces cerevisiae. FEBS Lett. 368, 73–76.CrossRefGoogle Scholar
  14. 14.
    Jamieson, D. J. (1992) Saccharomyces cerevisiae has distinct adaptive stress response to both hydrogen peroxide and menadione. J. Bacteriol. 174, 6678–6681.CrossRefGoogle Scholar
  15. 15.
    Jepsen, H. F., Jensen, B. (2004) Regulation of the stress response in the thermophilic fungu. Chaetomium thermophilum var. coprophilum. Soil Biol. Biochem. 36, 1669–1674.CrossRefGoogle Scholar
  16. 16.
    Kanesaki, Y., Suzuki, I., Allakhverdiev, S. I., Mikami, K., Murata, N. (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes i. Synechocystis sp. PCC 6803. Biochem. Biophys. Res. Com. 290, 339–348.CrossRefGoogle Scholar
  17. 17.
    Lewis, J. G., Learmonth, R. P., Watson, K. (1995) Induction of heat, freezing and salt tolerance by heat and salt shock i. Saccharomyces cerevisiae. Microbiology 141, 687–694.CrossRefGoogle Scholar
  18. 18.
    Lindquist, S., Kim, G. (1996) Heat shock protein 104 expression is sufficient for thermotolerance in the yeast. Proc. Natl. Acad. Sci. 93, 5301–5306.CrossRefGoogle Scholar
  19. 19.
    Mehdi, K., Penninckx, M. (1997) An important role for glutathione and gamma-glutamyl transpeptidase in the supply of growth requirements during nitrogen starvation of the yeas. Saccharomyces cerevisiae. Microbiology 143, 1885–1889.CrossRefGoogle Scholar
  20. 20.
    Oberson, J., Rawyler, A., Brandie, R., Canevascini, G. (1999) Analysis of the heat-shock response displayed by two Chaetomium species originating from different thermal environments. Fung. Gen. Biol. 26, 178–189.CrossRefGoogle Scholar
  21. 21.
    Peterson, G. L. (1983) Determination of total protein. In: Hirs, C. H. W., Timasheff, S. N. (eds). Methods in Enzymology, vol. 91. Academic Press, New York, pp. 108–110.Google Scholar
  22. 22.
    Penninckx, M. J., Elskens, M. T. (1993) Metabolism and functions of glutathione in micro-organisms. Adv. Microb. Physiol. 34, 239–301.CrossRefGoogle Scholar
  23. 23.
    Plesofsky-Vig, N., Brambl, R. (1993) Heat shock proteins in fungi. In: Jennings, D. H. (ed.). Stress Tolerance of Fungi. Marcel Dekker Incorporated, New York, pp. 45–68.Google Scholar
  24. 24.
    Pócsi, I., Prade, R. A., Penninckx, M. J. (2004) Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 49, 1–76.CrossRefGoogle Scholar
  25. 25.
    Toledo, I., Noronha-Dutra, A. A., Hansberg, W. (1991) Loss of NAD(P)-reducing power and glutathione disulfide excretion at the start of induction of aerial growth i. Neurospora crassa. J. Bacteriol. 173, 3243–3249.CrossRefGoogle Scholar
  26. 26.
    Trent, J., Gabrielsen, M., Jensen, B., Olsen, J., Neuhard, J. (1994) Acquired thermotolerance andheat shock proteins in thermophilic organisms from the three domains. J. Bacteriol. 176, 6148–6152.CrossRefGoogle Scholar
  27. 27.
    Vogel, H. J. (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am. Nat. 903, 435–446.CrossRefGoogle Scholar
  28. 28.
    Ölz, R., Larsson, K., Adler, L., Gustafsson, L. (1993) Energy flux and osmoregulation o. Saccharamyces cerevisiae grown in chemostats under NaCl stress. J. Bacteriol. 175, 2205–2213.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of CopenhagenCopenhagen KDenmark
  2. 2.Department of Microbial Biotechnology and Cell BiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations