Zinc Content in the Diet Affects the Activity of Cu/ZnSOD, Lipid Peroxidation and Lipid Profile of Spontaneously Hypertensive Rats


The present study focused on the effect of Zn containing diets on the activity of superoxide dismutase (Cu/ZnSOD), systolic blood pressure (SBP), lipid peroxides (ROOH) and lipids (LDL, HDL, triglycerides and cholesterol) in male spontaneously hypertensive rats (SHR). Three experimental groups of animals were studied: a control (G1-40 mg), and two with zinc-supplemented diets (G2-100 and G3-160 mg Zn/kg lab chow). The diets were introduced at the beginning of the development of hypertension (2 months after birth) and the animals were fed for 8 weeks. The activity of CuZnSOD in erythrocytes was determined by spectrophotometry with the use of RANSOD kit (RANDOX Laboratories Ltd., UK). Atomic-absorption spectrometry was used to determine Zn and Cu concentrations in the rat’s sera. A significantly increased Cu/ZnSOD activity was found in G3 compared with rats fed with control diet G. (p = 0.020). SBP was significantly decreased in G3 in relation to G. (p = 0.0048). The lipid hydroperoxide concentration was significantly decreased in G3 compared with G. (p = 0.016) and G. (p = 0.005). Zinc supplement affected lipids profile by decreasing LDL and increasing HDL. The present data suggest that Zn concentration in the diet plays an important role in the regulation of SBP and can be a critical nutrient for maintenance of anti-oxidative events in SHR.


  1. 1.

    Apostolova, M., Nachev, C., Koleva, M., Bontchev, P. R., Kehaiov, I. (1998) New competitive enzyme-linked immunosorbent assay for determination of metallothionein in tissue and sera. Talanta 46, 325–333.

    CAS  Article  Google Scholar 

  2. 2.

    Black, M. R., Medeiros, D. M., Brunett, E., Welke, R. (1988) Zinc supplements and serum lipids in young adult white males. Am. J. Clin. Nutr. 47, 970–975.

    CAS  Article  Google Scholar 

  3. 3.

    Bray, T. M., Bettger, W. J. (1990) The physiological role of zinc as an antioxidant. Free Radic. Biol. Med. 8, 281–291.

    CAS  Article  Google Scholar 

  4. 4.

    Cabell, K. S., Ma, L., Johnson, P. (1997) Effects of antihypertensive drugs on rat tissue antioxidant enzyme activities and lipid peroxidation levels. Biochem. Pharmacol. 54, 133–141.

    CAS  Article  Google Scholar 

  5. 5.

    Cebeci, S. A., Kocuturk, P. A., Kavas, G. O. (2002) Hypertension: does impaired endothelium-depen-dent relaxation affect superoxide scavenging. Biol. Trace Elem. Res. 90, 239–249.

    CAS  Article  Google Scholar 

  6. 6.

    Cousins, R. J. (1995) Absorption, transport and hepatic metabolism of copper and zinc: special reference to metalothionein and ceruloplasmin. Phys. Rev. 65, 238–309.

    Google Scholar 

  7. 7.

    Cunnane, S. C. (1988) Role of zinc in lipid and fatty acid metabolism and in membranes. Prog. Food Nutr. Sci. 12, 151–188.

    CAS  PubMed  Google Scholar 

  8. 8.

    Di Silvestro, R. (2000) Zinc in relation to diabetes and oxidative disease. J. Nutr. 130, 1509–1511.

    Article  Google Scholar 

  9. 9.

    Faure, P., Roussel, A. M., Richard, M. J., Foulon, T., Groslambert, P., Hadjian, A., Favier, A. (1991) Effect of an acute zinc depletion on rat lipoprotein distribution and peroxidation. Biol. Trace Elem. Res. 28, 135–146.

    CAS  Article  Google Scholar 

  10. 10.

    Hennig, B., Toborec, M, McClain, J. C. (1999) Antioxidant-like properties of zinc in activated endothelial cells. J. Amer. Coll. Nutr. 18, 152–158.

    CAS  Article  Google Scholar 

  11. 11.

    Khoja, S. M., Marzouki, Z. M., Ashry, K. M. et al. (2002) Effect of dietary zinc deficiency on rat lipid concentrations. Saudi Med. J. 23, 82–86.

    PubMed  Google Scholar 

  12. 12.

    Koo, S. I., Williams, D. A. (1981) Relationship between the nutritional status of zinc and cholesterol concentration of serum lipoproteins in adult male rats. Am. J. Clin. Nutr. 34, 2376–2381.

    CAS  Article  Google Scholar 

  13. 13.

    McCord, J. M., Fridovich, J. (1969) Superoxide dismutase. An enzymatic function for Erythro-cuprein. J. Biol. Chem. 244, 6049–6055.

    CAS  PubMed  Google Scholar 

  14. 14.

    Mertens, A., Holvoet, P. (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 15, 2073–2084.

    CAS  Article  Google Scholar 

  15. 15.

    Miller, A. F. (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol. 8, 162–168.

    CAS  Article  Google Scholar 

  16. 16.

    Oteiza, P. L., Olin, K. L., Fraga, C. G., Keen, C. L. (1996) Oxidant defense systems in testes from zinc deficient rats. Proc. Soc. Exp. Biol. Med. 213, 85–91.

    CAS  Article  Google Scholar 

  17. 17.

    Paul, C. F. (1991) Lipids, lipoproteins and apolipoproteins. In: Howanitz, S. H., Howanitz, P. S. (eds). Laboratory Medicine. Test Selection and Interpretation. New York, Edinburgh, London, Melburne, Tokyo.

    Google Scholar 

  18. 18.

    Roughead, Z. K., Johnson, L. K., Hunt, J. R. (1999) Dietary copper primarily affects antioxidant capacity and dietary iron mainly affects iron status in a surface response study of female rats fed varying concentrations of iron, zinc and coppe. J. Nutr. 129, 1368–1376.

    CAS  Article  Google Scholar 

  19. 19.

    Russo, C., Olivieri, O., Girelli, D., Faccini, G., Zenari, M. L., Lombardi, S., Corrocher, R. (1998) Anti-oxidant status of lipid peroxidation in patients with essential hypertension. J. Hypertens. 16, 1267–1271.

    CAS  Article  Google Scholar 

  20. 20.

    Sakanashi, T. M., Keen, C. L., Hong, K. H. et al. (1993) Zinc deficiency associated alterations in the chemotactic and respiratory burst responses of rat peripheral blood neutrophils. FASEB J. 7, A723.

    Article  Google Scholar 

  21. 21.

    Sato, M., Yanagisawa, H., Nojima, Y. et al. (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: Possible role of Cu/ZnSOD. Clin. Exp. Hypertens. 24, 355–370.

    CAS  Article  Google Scholar 

  22. 22.

    Shaheen, A., Abd El-Fattah, A. (1995) Effect of dietary zinc on lipid peroxidation, glutathione, protein thiols levels and superoxide dismutase activity in rat tissues. Int. J. Biochem. Cell Biol. 27, 89–95.

    CAS  Article  Google Scholar 

  23. 23.

    Yagi, K. (1982) Assay for serum and lipid peroxide level and its clinical significance. In: Yagi, K. (ed.). Lipid Peroxides in Biology and Medicine. Academic Press, Orlando, pp. 223–243.

    Chapter  Google Scholar 

  24. 24.

    Yanagisawa, H., Moridaira, K., Wada, O. (2000) Zinc deficiency further increases the enhanced expression of endothelin-1 in glomeruli of the obstricted kidney. Kidney Int. 58, 575–586.

    CAS  Article  Google Scholar 

  25. 25.

    Yelinova, V. I., Khramtsov, V. V., Markel, A. L. (1999) Manifestation of oxidative stress in the pathogenesis of arterial hypertension in ISIAH rats. Biochem. Biophys. Res. Commun. 263, 450–453.

    CAS  Article  Google Scholar 

  26. 26.

    Yokoi, K., Alcock, N. W., Sandstead, H. H. (1994) Iron and zinc nutriture of premenopausal women: Associations of diet with serum ferritin and plasma zinc disappearance. J. Lab. Clin. Med. 124, 852–861.

    CAS  PubMed  Google Scholar 

  27. 27.

    Yousef, M. I., El-Hendy, H. A., El-Demerdash, F. M. et al. (2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology 14, 223–234.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anelia A. Dimitrova.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Dimitrova, A.A., Strashimirov, D., Betova, T. et al. Zinc Content in the Diet Affects the Activity of Cu/ZnSOD, Lipid Peroxidation and Lipid Profile of Spontaneously Hypertensive Rats. BIOLOGIA FUTURA 59, 305–314 (2008). https://doi.org/10.1556/ABiol.59.2008.3.4

Download citation


  • Zinc diet
  • SHR
  • Cu/ZnSOD
  • lipid hydroperoxides
  • systolic blood pressure