Liver and Heart Mitochondria Obtained from Adelie Penguin (Pygoscelis adeliae) Offers High Resistance to Lipid Peroxidation

Abstract

Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40–50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid CI 8:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 ± 6.73 and 100.09 ± 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.

References

  1. 1.

    Catalá, A., Cerruti, A. (1997) Non enzymatic peroxidation of lipids isolated from rat liver microsomes, mitochondria and nuclei. Int. J. Biochem. Cell. Biol. 29, 541–546.

    Article  Google Scholar 

  2. 2.

    Catalá, A. (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int. J. Biochem. Cell. Biol. 38, 1482–1495.

    Article  Google Scholar 

  3. 3.

    Coria, N. R., Spairani, H., Vivequin, S. M., Fontana, R. (1995) Diet of Adelie penguins Pygoscelis adeliae during the post-hatching period at Esperanza Bay, Antarctica, 1987/88. Polar Biology 15, 415–418.

    Google Scholar 

  4. 4.

    Couture, P., Hulbert, A. J. (1995) Membrane fatty acid composition of tissues is related to body mass of mammals. J. Membr. Biol. 148, 27–39.

    CAS  Article  Google Scholar 

  5. 5.

    Folch, J., Lees, N., Sloane Stanley, G. A. (1957) A. simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Guéraud, F., Paris, A. (1997) Hepatic microsomal membrane lipidic composition and growth hormone effect in adult male rat: evidence for a “feminization” process of total phospholipid fatty acid pattern. Biochim. Biophys. Acta 1329, 97–110.

    Article  Google Scholar 

  7. 7.

    Gutiérrez, A. M., Reboredo, C. J., Mosca, S. M., Catala, A. (2004) Fatty acid composition and lipid peroxidation induced by ascorbate-Fe2+ in different organs of goose (Anser anser). Comp. Biochem. and Physiol C: Toxicol Pharmacol 137, 123–132.

    Google Scholar 

  8. 8.

    Gutiérrez, A. M., Reboredo, G. R., Mosca, S. M., Catala, A. (2006) A. low degree of fatty acidunsat-uration leads to high resistance to lipid peroxidation in mitochondria and microsomes of different organs of quail (Coturnix coturnix japonica). Mol. Cell. Biochem. 282, 109–115.

    Article  Google Scholar 

  9. 9.

    Llanillo, M., Sanchez Yague, I., Checa, A., Martin-Valmaseda, E. M., Felipe, A. (1995) Phospholipid and fatty acid composition in stored sheep erythrocytes of different densities. Exp. Hematol. 23, 258–264.

    CAS  PubMed  Google Scholar 

  10. 10.

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  11. 11.

    Maresca, B., Cossins, A. R. (1993) Fatty acid feedback and fluidity. Nature 365, 606–607.

    CAS  Article  Google Scholar 

  12. 12.

    Minotti, G., Aust, S. D. (1992) Redox cycling of iron and lipid peroxidation. Lipids 27, 219–226.

    CAS  Article  Google Scholar 

  13. 13.

    Ozgova, S., Hermanek, J., Gut, I. (2003) Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH, Fe-ascorbate and Fe microsomal systems. Biochem. Pharmacol. 66, 1127–1137.

    CAS  Article  Google Scholar 

  14. 14.

    Palmer, S. (1994) Antioxidant vitamins and cancer risk. Nutrition 10, 433–434.

    Google Scholar 

  15. 15.

    Pamplona, R., Portero-Otin, M., Ledo, D. F., Gredilla, R., Barja, G. (1999) Heart fatty acid unsatu-ration and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse. Aging Clin. Exp. Res. 11, 44–49.

    CAS  Article  Google Scholar 

  16. 16.

    Pamplona, R., Portero-Otin, M., Riba, D., Ruiz, C., Prat, I., Bellmunt, M. I., Barja, G. (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J. Lipid. Res. 39, 1989–1994.

    CAS  PubMed  Google Scholar 

  17. 17.

    Schneider, W. C., Hogeboom, H. G. (1950) Intracellular distribution of enzymes. Further studies and distribution of cytochrome c in rat liver homogenates. J. Biol. Chem. 178, 123–128.

    Google Scholar 

  18. 18.

    Terrasa, A. M., Guajardo, M., Catala, A. (2000) Selective inhibition of the non-enzymatic lipid peroxidation of phosphatidylserine in rod outer segments by α-tocopherol. Moll. Cell. Biochem. 211, 39–45.

    CAS  Article  Google Scholar 

  19. 19.

    Vladimirov, Yu. A., Olenev, V. I., Suslova, T. B., Cheremisina, Z. P. (1980) Lipid peroxidation in mitochondrial membrane. Adv. Lipid. Res. 17, 173–249.

    CAS  Article  Google Scholar 

  20. 20.

    Wright, 1 R., Rumbaugh, R. C., Colby, H. D., Miles, P. R. (1979) The relationship between chemi-luminescence and lipid peroxidation in rat hepatic microsomes. Arch. Biochem. Biophys. 192, 344–351.

    CAS  Article  Google Scholar 

  21. 21.

    Cherel, Y., Verdon, C., Ridoux, V. (1993) Seasonal importance of oceanic myctophids in King penguin diet at Crozet Islands. Polar Biol. 13, 355–357.

    Google Scholar 

  22. 22.

    Raclot, T., Groscolas, R., Cherel, Y. (1998) Fatty acid evidence for the importance of myctophid fishes in the diet of King penguins, Aptenodytespatagonicus. Mar. Biol. (Berl). 132, 523–533.

    Article  Google Scholar 

  23. 23.

    Decrock, F., Groscolas, R., McCartney, R. J., Speakew, B. K. (2001) Transfer of n-3 andn-6 polyunsaturated fatty acids from yolk to embryo during development of the King penguin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R843-R853.

Download references

Acknowledgement

We thank Med. Vet. César Arcemis for the excellent technical assistance in performing fatty acid analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana María Gutiérrez.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Gavazza, M., Marmunti, M., Montalti, D. et al. Liver and Heart Mitochondria Obtained from Adelie Penguin (Pygoscelis adeliae) Offers High Resistance to Lipid Peroxidation. BIOLOGIA FUTURA 59, 185–194 (2008). https://doi.org/10.1556/ABiol.59.2008.2.5

Download citation

Keywords

  • Penguin
  • lipid peroxidation
  • liver
  • heart-mitochondria