Advertisement

Acta Biologica Hungarica

, Volume 59, Issue 2, pp 185–194 | Cite as

Liver and Heart Mitochondria Obtained from Adelie Penguin (Pygoscelis adeliae) Offers High Resistance to Lipid Peroxidation

  • Mariana Gavazza
  • Mónica Marmunti
  • D. Montalti
  • Ana María GutiérrezEmail author
Article

Abstract

Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40–50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid CI 8:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 ± 6.73 and 100.09 ± 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.

Keywords

Penguin lipid peroxidation liver heart-mitochondria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Med. Vet. César Arcemis for the excellent technical assistance in performing fatty acid analysis.

References

  1. 1.
    Catalá, A., Cerruti, A. (1997) Non enzymatic peroxidation of lipids isolated from rat liver microsomes, mitochondria and nuclei. Int. J. Biochem. Cell. Biol. 29, 541–546.CrossRefGoogle Scholar
  2. 2.
    Catalá, A. (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int. J. Biochem. Cell. Biol. 38, 1482–1495.CrossRefGoogle Scholar
  3. 3.
    Coria, N. R., Spairani, H., Vivequin, S. M., Fontana, R. (1995) Diet of Adelie penguins Pygoscelis adeliae during the post-hatching period at Esperanza Bay, Antarctica, 1987/88. Polar Biology 15, 415–418.Google Scholar
  4. 4.
    Couture, P., Hulbert, A. J. (1995) Membrane fatty acid composition of tissues is related to body mass of mammals. J. Membr. Biol. 148, 27–39.CrossRefGoogle Scholar
  5. 5.
    Folch, J., Lees, N., Sloane Stanley, G. A. (1957) A. simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Guéraud, F., Paris, A. (1997) Hepatic microsomal membrane lipidic composition and growth hormone effect in adult male rat: evidence for a “feminization” process of total phospholipid fatty acid pattern. Biochim. Biophys. Acta 1329, 97–110.CrossRefGoogle Scholar
  7. 7.
    Gutiérrez, A. M., Reboredo, C. J., Mosca, S. M., Catala, A. (2004) Fatty acid composition and lipid peroxidation induced by ascorbate-Fe2+ in different organs of goose (Anser anser). Comp. Biochem. and Physiol C: Toxicol Pharmacol 137, 123–132.Google Scholar
  8. 8.
    Gutiérrez, A. M., Reboredo, G. R., Mosca, S. M., Catala, A. (2006) A. low degree of fatty acidunsat-uration leads to high resistance to lipid peroxidation in mitochondria and microsomes of different organs of quail (Coturnix coturnix japonica). Mol. Cell. Biochem. 282, 109–115.CrossRefGoogle Scholar
  9. 9.
    Llanillo, M., Sanchez Yague, I., Checa, A., Martin-Valmaseda, E. M., Felipe, A. (1995) Phospholipid and fatty acid composition in stored sheep erythrocytes of different densities. Exp. Hematol. 23, 258–264.PubMedGoogle Scholar
  10. 10.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  11. 11.
    Maresca, B., Cossins, A. R. (1993) Fatty acid feedback and fluidity. Nature 365, 606–607.CrossRefGoogle Scholar
  12. 12.
    Minotti, G., Aust, S. D. (1992) Redox cycling of iron and lipid peroxidation. Lipids 27, 219–226.CrossRefGoogle Scholar
  13. 13.
    Ozgova, S., Hermanek, J., Gut, I. (2003) Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH, Fe-ascorbate and Fe microsomal systems. Biochem. Pharmacol. 66, 1127–1137.CrossRefGoogle Scholar
  14. 14.
    Palmer, S. (1994) Antioxidant vitamins and cancer risk. Nutrition 10, 433–434.Google Scholar
  15. 15.
    Pamplona, R., Portero-Otin, M., Ledo, D. F., Gredilla, R., Barja, G. (1999) Heart fatty acid unsatu-ration and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse. Aging Clin. Exp. Res. 11, 44–49.CrossRefGoogle Scholar
  16. 16.
    Pamplona, R., Portero-Otin, M., Riba, D., Ruiz, C., Prat, I., Bellmunt, M. I., Barja, G. (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J. Lipid. Res. 39, 1989–1994.PubMedGoogle Scholar
  17. 17.
    Schneider, W. C., Hogeboom, H. G. (1950) Intracellular distribution of enzymes. Further studies and distribution of cytochrome c in rat liver homogenates. J. Biol. Chem. 178, 123–128.Google Scholar
  18. 18.
    Terrasa, A. M., Guajardo, M., Catala, A. (2000) Selective inhibition of the non-enzymatic lipid peroxidation of phosphatidylserine in rod outer segments by α-tocopherol. Moll. Cell. Biochem. 211, 39–45.CrossRefGoogle Scholar
  19. 19.
    Vladimirov, Yu. A., Olenev, V. I., Suslova, T. B., Cheremisina, Z. P. (1980) Lipid peroxidation in mitochondrial membrane. Adv. Lipid. Res. 17, 173–249.CrossRefGoogle Scholar
  20. 20.
    Wright, 1 R., Rumbaugh, R. C., Colby, H. D., Miles, P. R. (1979) The relationship between chemi-luminescence and lipid peroxidation in rat hepatic microsomes. Arch. Biochem. Biophys. 192, 344–351.CrossRefGoogle Scholar
  21. 21.
    Cherel, Y., Verdon, C., Ridoux, V. (1993) Seasonal importance of oceanic myctophids in King penguin diet at Crozet Islands. Polar Biol. 13, 355–357.Google Scholar
  22. 22.
    Raclot, T., Groscolas, R., Cherel, Y. (1998) Fatty acid evidence for the importance of myctophid fishes in the diet of King penguins, Aptenodytespatagonicus. Mar. Biol. (Berl). 132, 523–533.CrossRefGoogle Scholar
  23. 23.
    Decrock, F., Groscolas, R., McCartney, R. J., Speakew, B. K. (2001) Transfer of n-3 andn-6 polyunsaturated fatty acids from yolk to embryo during development of the King penguin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R843-R853.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mariana Gavazza
    • 1
  • Mónica Marmunti
    • 1
  • D. Montalti
    • 2
  • Ana María Gutiérrez
    • 1
    • 2
    Email author
  1. 1.Cátedra BioquímicaFacultad de Ciencias. VeterinariasArgentina
  2. 2.Cátedra de Fisiologia Animal, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations