Acta Biologica Hungarica

, Volume 59, Issue 2, pp 247–258 | Cite as

RespxAzolla Plants (Azolla pinnata and Azolla filiculoides) Exposed to UV-B

  • Amjad Masood
  • M. Zeeshan
  • G. AbrahamEmail author


Effect of ultravilolet-B (0.4 Wm−2) irradiation on growth, flavonoid content, lipid peroxidation, proline accumulation and activities of superoxide dismutase and peroxidase was comparatively analysed in Azolla pinnata and Azolla flliculoides. Growth measured as increment in dry weight reduced considerably due to all UV-B treatments. However, the reduction was found to be severe in A. flliculoides as compared to A. pinnata. The level of UV-absorbing compound flavonoids increased significantly in A. pinnata plants whereas only a slight increase in the flavonoid content was observed in A. flliculoides. UV-B exposure led to enhanced production of malondialdehyde (MDA) and electrolyte leakage in A. flliculoides than A. pinnata. Proline accumulation also showed a similar trend. Marked differences in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD) was noticed in both the plants exposed to UV-B. Our comparative studies indicate A. pinnata to be better tolerant to UV-B as compared with A. flliculoides which appears to be sensitive.


Azolla pinnata Azolla filiculoides flavonoids growth lipid peroxidation proline peroxidase superoxide dismutase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to University administration and Council of Scientific and Industrial Research, New Delhi India for providing necessary laboratory facilities and financial assistance.


  1. 1.
    Madronich, S., McKenzie, L. O., Bjorn, L. O., Caldwell, M. M. (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J. Photochem. Photobiol. B. 46, 5–19.CrossRefGoogle Scholar
  2. 2.
    Environmental Health Criteria (1994) Ultraviolet radiations, World Health Organization Report, Number 160.Google Scholar
  3. 3.
    Watanabe, I., Espinas, C. R., Berja, N. S., Alimagno, B. V. (1977) Utilization of the Azolla- Anabaena complex as a nitrogen fertilizer for rice, IRRI Res. Paper Ser. 11, 1–15.Google Scholar
  4. 4.
    Wagner, G. M. (1977) Azolla: a review of its biology and utilization. Bot. Rev. 63, 1–26.CrossRefGoogle Scholar
  5. 5.
    Teramura, A. H., Sullivan, J. H. (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth. Res, 39, 463–473.CrossRefGoogle Scholar
  6. 6.
    Jansen, M. A. K., Gaba, V., Greenberg, B. M. (1998) Higher plants and UV-B radiation: balancing, damage, repair and acclimation. Trends Plant Sci. 3, 131–135.CrossRefGoogle Scholar
  7. 7.
    Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 50, 601–609.CrossRefGoogle Scholar
  8. 8.
    Kondo, N., Kawashima, M. (2000) Enhancement of the tolerance to oxidative stress in cucumber (Cucumus sativus L.) seedlings by UV-B radiation: possible involvement of phenolic compounds and antioxidative enzymes. J. Plant Res. 113, 311–317.CrossRefGoogle Scholar
  9. 9.
    Arora, A., Sairam, R. K., Srivastava, G. C. (2002) Oxidative stress and antioxidant system in plants. Curr Sci. 82, 1227–1238.Google Scholar
  10. 10.
    Caldwell, M. M., Bjorn, L. O., Bornman, I. E., Flint, S. D., Kulandaivelu, S. D., Teramura, A. H., Tevini, M. (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochem. Photobiol. 46, 40–52.CrossRefGoogle Scholar
  11. 11.
    Allen, M. M. (1968) Simple conditions for growth of unicellular blue green algae on plates. J. Phycol. 4, 1–4.CrossRefGoogle Scholar
  12. 12.
    Mirecki, R. M., Teramura, A. H. (1984) Effects of ultraviolet-B irradiance on soybean V. The dependence of plant sensitivity on the photo synthetic photon flux density during and after leaf expansion. Plant Physiol. 74, 475–480.CrossRefGoogle Scholar
  13. 13.
    Dionisio-Sese, M. L., Tobita, S. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9.CrossRefGoogle Scholar
  14. 14.
    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiom-etry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.CrossRefGoogle Scholar
  15. 15.
    Bates, L. S., Waldren, R. P., Tear, I. D. (1973) Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207.CrossRefGoogle Scholar
  16. 16.
    Stewart, R. R. C., Bewley, J. D. (1980) Lipid peroxidation associated with accelerated ageing of Soybean axes. Plant Physiol. 65, 245–248.CrossRefGoogle Scholar
  17. 17.
    Aono, M., Saji, H., Fujiyama, K., Sugita, M., Kondo, N., Tanaka, K. (1995) Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol. 107, 645–648.CrossRefGoogle Scholar
  18. 18.
    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.Google Scholar
  19. 19.
    Bradford, M. M. (1976) A. rapid and sensitive method for quantitation of microgram quantities of protein using dye binding. Anal Biochem. 77, 248–254.CrossRefGoogle Scholar
  20. 20.
    Teramura, A. H., Biggs, R. H., Kossuth, S. (1980) Effects of ultraviolet-B irradiances on soyabean 2. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration and transpiration. Plant Physiol. 65, 483–488.CrossRefGoogle Scholar
  21. 21.
    Fiscus, E. L., Booker, F. L. (1995) Increased UV-B a threat to crop photosynthesis and productivity? Photosynth. Res. 43, 81–92.CrossRefGoogle Scholar
  22. 22.
    Allen, D. I., Nogues, S., Morison, J. I. L., Greenslade, P. D., McLeod, A. R., Baker, N. R. (1999) A. thirty percent increase in UV-B has no impact on photosynthesis in well watered and droughted pea plants in the field. Global Change Biol. 5, 235–244.CrossRefGoogle Scholar
  23. 23.
    Farooq, M., Suresh Babu, G., Ray, R. S., Mishra, R. B., Shankar, U., Handa, R. K. (2000) Sensitivity of Duckweed (Lemna major) to UV-B radiation. Biochem. Biophys. Res. Commun. 276, 970–973.CrossRefGoogle Scholar
  24. 24.
    Prasad, S. M., Srivastava, G., Mishra, V., Dwivedi, R., Zeeshan, M. (2005) Active oxygen species generation, oxidative damage and antioxidant defense system in Pisum sativum exposed to UV-B irradiation. Physiol. Mol. Biol. Plants 11, 1–7.Google Scholar
  25. 25.
    Jaya Kumar, M., Linga Kumar, K., Kulandaivelu, G. (2002) Effect of enhanced UV-B radiation on growth and photo synthetic activities in aquatic fern Azolla microphylla Knulf Photosynthetica 40, 85–90.CrossRefGoogle Scholar
  26. 26.
    Dai, Q., Yan, B., Huang, S., Liu, X., Peng, S., Miranda, M. L. L., Chavez, A. Q., Vergara, B. S., Olszyk, D. M. (1997) Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation. Physiol. Plant 101, 301–308.CrossRefGoogle Scholar
  27. 27.
    Prasad, S. M., Dwivedi, R., Zeeshan, M. (2005) Growth, photo synthetic electron transport and antioxidant responses of young soybean seedlings to simultaneous exposure if nickel and UV-B stress. Photosynthetica 43, 177–185.CrossRefGoogle Scholar
  28. 28.
    Pandolfini, T., Gabbrielli, R., Comparini, C. (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ. 15, 719–725.CrossRefGoogle Scholar
  29. 29.
    Bors, W., Heller, W., Michel, C., Saran, M. (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods enzymol 186, 343–355.CrossRefGoogle Scholar
  30. 30.
    Bolink, E. M., Schalkwijk, I. V., Posthumus, F., Van Hasselt, P. R. (2001) Growth under UV-B radiation increases tolerance to high light stress in pea and bean plants. Plant Ecol. 154, 149–156.CrossRefGoogle Scholar
  31. 31.
    Saunders, J. A., McClure, J. W. (1976) The distribution of flavonoids in chloroplasts of twenty five species of vascular plants. Phytochemistry 15, 809–810.CrossRefGoogle Scholar
  32. 32.
    Takahama, U. (1982) Suppression of carotenoid photobleaching by kaemferol in isolated chloroplasts. Plant Cell Physiol. 23, 859–864.Google Scholar
  33. 33.
    Pardha Saradhi, P., Alia, Arora, S., Prasad, K. V. S. K. (1995) Proline accumulates in plants exposed to UV-radiation and protects them against UV-induced peroxidation. Biochem. Biophys. Res. Commun. 209, 1–5.CrossRefGoogle Scholar
  34. 34.
    Matysik, J., Alia, Bhalu, B., Mohanty, P. (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 82, 525–532.Google Scholar
  35. 35.
    Foyer, C. H., Descourvieres, P., Kunert, K. J. (1994) Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant Cell and Environm. 17, 579–587.Google Scholar
  36. 36.
    Prasad, S. M., Dwivedi, R., Zeeshan, M., Ranjana, S. (2005) UV-B and cadmium induced changes in pigments, photo synthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp. Acta Physiol. Plant 26, 423–430.CrossRefGoogle Scholar
  37. 37.
    Lee, D. H., Kim, Y. S., Lee, C. B. (2001) The inductive responses of the antioxidant enzymes by salt stress in rice (Oryza sativa L.). J. Plant Physiol. 158, 737–745.CrossRefGoogle Scholar
  38. 38.
    Sudhakar, C., Lakshmi, A., Giridarakumar, S. (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Moms alba) under NaCl salinity. Plant Sci. 161, 613–619.CrossRefGoogle Scholar
  39. 39.
    Foyer, C. H., Lopez-Delgado, H., Dat, J. F., Scott, I. M. (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant 100, 241–254.CrossRefGoogle Scholar
  40. 40.
    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci. 22, 561–569.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Botany, Allahabad Agriculture InstituteDeemed UniversityAllahabadIndia
  2. 2.CCUBGA, Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations