The Effect of Lead on Fitness Components and Developmental Stability in Drosophila Subobscura

Abstract

We analyzed the developmental time, egg-to-adult viability, and developmental stability (fluctuating wing size asymmetry) in Drosophila subobscura, maintained for six generations on different concentrations of lead. Development time is significantly affected by generation and lead concentration, but interaction of these factors is not a significant source of variability for this fitness component. Generation and the interaction generation x concentration of lead significantly affect egg-to-adult viability. Levene’s test of heterogeneity of variance showed that variability of FA is not significant in any of the samples. Within both lead concentrations females showed significantly higher FA indices for the wing width than males. Within sexes, a significantly higher FA was found only in females for wing width FA between the control and the lower concentration of lead. The results show that if strong relationship between FA and the studied fitness components exists, it results in a stronger selection of unstable genotypes under lead as a stress factor and, consequently, FA needs to be used with caution as a biomarker in natural populations under environmental stress.

References

  1. 1.

    Al-Momami F. A., Massadeh A. M. (2005) Effect of different heavy letal concentrations on Drosophila melanogaster larval growth and development. Biological Trace Element Res. 108, 271–277.

    Article  Google Scholar 

  2. 2.

    Bourguet D. (2000) Fluctuating asymmetry and fitness in Drosophila melanogaster. J. Evol. Biol. 13, 515–521.

    Article  Google Scholar 

  3. 3.

    Chapco W., Jones S. G., McDonnell W. B. (1978) Correlation between chromosome segments and fitness in Drosophila melanogaster. III. Differential genetic responses to zinc sulphate and seleno-cystine. Can. J. Genet. Cytol. 20, 555–565.

    CAS  Article  Google Scholar 

  4. 4.

    Clarke G. M. (1993) Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality. Environ. Poll. 82, 207–211.

    CAS  Article  Google Scholar 

  5. 5.

    Clarke G. M. (1995) Relationships between developmental stability and fitness: application for conservation biology. Conservation Biology 9, 18.

    Article  Google Scholar 

  6. 6.

    Clarke G. M. (1998) Developmental stability and fitness: the evidence is not quite so clear. The American Naturalist 152, 762–766.

    CAS  Article  Google Scholar 

  7. 7.

    Clarke G. M. (2003) Developmental stability — fitness relationships in animals: some theoretical considerations. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 187–198.

    Google Scholar 

  8. 8.

    Dongen S. V. (2006) Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J. Evol. Biol. 19, 1727–1743.

    CAS  Article  Google Scholar 

  9. 9.

    Durliat M., Bonneton, F., Boissoneau E., Andre M., Wegnez M. (1995) Expression of metalloth-ionein genes during the postembryonic development of Drosophila melanogaster. Biometals 8, 339–351.

    CAS  Article  Google Scholar 

  10. 10.

    Freeman D. C., Graham J. H., Emlen J. M. et al. (2003) Plant development Instability: new measures, applications and regulation. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 367–386.

    Google Scholar 

  11. 11.

    Gill H. J., Nida D. L., Dean D. A., England M. W., Bruce Jacobson J. (1989) Resistance of Drosophila to cadmium: biochemical factors in resistant and sensitive strains. Toxicology 56, 315–321.

    CAS  Article  Google Scholar 

  12. 12.

    Gillespie R. B., Guttman S. I. (1999) Chemical-induced changes in the genetic structure of populations: Effects on allozymes. In: Forbes V. E. (ed.) Genetics and Ecotoxicology. Taylor and Francis, pp. 55–77.

    Google Scholar 

  13. 13.

    Graham J. H., Roe K. E., West T. B. (1993) Effects of lead and benzene on the developmental stability of Drosophila melanogaster. Ecotoxicology 2, 185–195.

    CAS  Article  Google Scholar 

  14. 14.

    Hendrickx F., Maelfait, J.-P., Lens L. (2003) Relationship between fluctuating asymmetry and fitness within and between stressed and unstressed populations of the wolf spider Pirata piraticus. J. Evol. Biol. 16, 1270–1279.

    CAS  Article  Google Scholar 

  15. 15.

    Hoffmann A. A., Woods R. E. (2001) Trait variability and stress; canalization, developmental stability and the need for a broad approach. Ecol. Letters 4, 97–101.

    Article  Google Scholar 

  16. 16.

    Hoffmann A. A., Woods R. E. (2003) Associating environmental stress with developmental stability: problems and patterns. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 387–401.

    Google Scholar 

  17. 17.

    Kalajdzic P., Stamenkovic-Radak M., Andjelkovic M. (2006) The effect of different concentrations of lead on inversion polymorphism in Drosophila subobscura. Hereditas 138, 241–243.

    Google Scholar 

  18. 18.

    Kohler R. H., Zanger M., Eckwert H., Einfeldt I. (2000) Selection favours low Hsp70 levels in chronically metal-stressed soil arthropods. J. Evol. Biol. 13, 569–582.

    CAS  Article  Google Scholar 

  19. 19.

    Krimbas C. B. (1993) Drosophila subobscura. Biology, Genetics and Inversion Polymorphism. Kovac Verlag.

    Google Scholar 

  20. 20.

    Leary R. F., Allendorf F. W. (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4, 214–217.

    CAS  Article  Google Scholar 

  21. 21.

    Macnair M. (1997) The evolution of plants in metal-contaminated environments. In: Bijlsma R., Loeschcke V. (eds) Environmental Stress, Adaptation and Evolution. Birkhauser Verlag, Basel, pp. 4–24.

    Google Scholar 

  22. 22.

    Magnusson J., Ramel C. (1986) Genetic variation in the susceptibility to mercury and other metal compounds in Drosophila melanogaster Teratog. Carcinog. Mutagen. 6, 289–305.

    CAS  Article  Google Scholar 

  23. 23.

    Maroni G., Watson D. (1985) Uptake and binding of cadmium, copper and zinc in Drosophila melanogaster larvae. Insect Biochem. 15, 55–63.

    CAS  Article  Google Scholar 

  24. 24.

    Møller A. P., Swaddle J. P. (1997) Asymmetry, Developmental Stability and Evolution. Oxford University Press.

    Google Scholar 

  25. 25.

    Møller A. P. (1999) Asymmetry as a predictor of growth, fecundity and survival. Ecol. Letters 2, 149–156.

    Article  Google Scholar 

  26. 26.

    Møller A. P., Cuervo J. J. (2003) Asymmetry, size and sexual selection: factors affecting heterogeneity in relationships between asymmetry and sexual selection. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 262–278.

    Google Scholar 

  27. 27.

    Nriagu J. O., Pacyna J. M. (1988) Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature 333, 134–139.

    CAS  Article  Google Scholar 

  28. 28.

    Palmer R. A., Strobeck C. (2001) Fluctuating Asymmetry Analysis Revisited. Oxford University Press.

    Google Scholar 

  29. 29.

    Polak M., Kroeger D. E., Cartwright I. L., Ponce de Leon C. (2004) Genotype-specific responses of fluctuating asymmetry and of preadult survival to the effects of lead and temperature stress in Drosophila melanogaster. Environ. Pollution 127, 145–155.

    CAS  Article  Google Scholar 

  30. 30.

    Posthuma L., van Straalen N. M. (1993) Heavy metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp. Pharmacol. Toxicol. 106, 11–38.

    Google Scholar 

  31. 31.

    Rosenheim J. A., Johnson M. W., Mau R. F. L., Welter S. C. (1996) Biochemical preadaptations, founder events, and the evolution of resistance in arthropods. J. Econ. Entomol. 89, 263–273.

    Article  Google Scholar 

  32. 32.

    Rutherford S. L., Lindquist S. (1998) Hsp90 as a capacitor for morphological variation. Nature 396, 336–342.

    CAS  Article  Google Scholar 

  33. 33.

    Santos M. (2002) Genetics of wing size asymmetry in Drosophila buzzatii. J. Evol. Biol. 15, 720–734.

    Article  Google Scholar 

  34. 34.

    Schell L. M., Ulijiaszek S. J. (eds) (1999) Urbanism, Health and Human Biology in Industrialized Countries. Society for the Study of Human Biology Symposium 40. New York, NY, Cambridge University Press.

    Book  Google Scholar 

  35. 35.

    Shirley M. D. R, Sibly R. M. (1999) Genetic basis of a between-environment trade-off involving resistance to cadmium in Drosophila melanogaster. Evolution 53, 826–836.

    Article  Google Scholar 

  36. 36.

    Sibly R. M., Calow P. (1989) A life-cycle theory of responses to stress. Biol. Linnean Society 37, 101–116.

    Article  Google Scholar 

  37. 37.

    Sperlich D., Feuerbach H. (1966) 1st der chromosomale Strukturpolymorphismus von Drosophila subobscura stabil oder flexible? Z. induct. Abstamm. U. Vererblehre 98, 16–24.

    CAS  Google Scholar 

  38. 38.

    Stige, L.C., Hessen D. O., Vollestad L. A. (2006) Fitness, developmental instability and the ontogeny of fluctuating asymmetry in Daphnia magna. Biol. Society 88, 179–192.

    Google Scholar 

  39. 39.

    Zakharov V. M. (2003) Linking developmental stability and environmental stress: a whole organism approach. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 402–414.

    Google Scholar 

  40. 40.

    Zar H. J. (1999) BiostatisticalAnalysis. Prentice-Hall. Upper Saddle River. New Jersey, USA.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marina Stamenkovic-Radak.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Stamenkovic-Radak, M., Kalajdzic, P., Savic, T. et al. The Effect of Lead on Fitness Components and Developmental Stability in Drosophila Subobscura. BIOLOGIA FUTURA 59, 47–56 (2008). https://doi.org/10.1556/ABiol.59.2008.1.4

Download citation

Keywords

  • Lead
  • development time
  • viability
  • Drosophila
  • fluctuating asymmetry