Advertisement

Acta Biologica Hungarica

, Volume 59, Issue 1, pp 47–56 | Cite as

The Effect of Lead on Fitness Components and Developmental Stability in Drosophila Subobscura

  • Marina Stamenkovic-RadakEmail author
  • P. Kalajdzic
  • Tatjana Savic
  • Marija Savic
  • Zorana Kurbalija
  • Gordana Rasic
  • M. Andjelkovic
Article

Abstract

We analyzed the developmental time, egg-to-adult viability, and developmental stability (fluctuating wing size asymmetry) in Drosophila subobscura, maintained for six generations on different concentrations of lead. Development time is significantly affected by generation and lead concentration, but interaction of these factors is not a significant source of variability for this fitness component. Generation and the interaction generation x concentration of lead significantly affect egg-to-adult viability. Levene’s test of heterogeneity of variance showed that variability of FA is not significant in any of the samples. Within both lead concentrations females showed significantly higher FA indices for the wing width than males. Within sexes, a significantly higher FA was found only in females for wing width FA between the control and the lower concentration of lead. The results show that if strong relationship between FA and the studied fitness components exists, it results in a stronger selection of unstable genotypes under lead as a stress factor and, consequently, FA needs to be used with caution as a biomarker in natural populations under environmental stress.

Keywords

Lead development time viability Drosophila fluctuating asymmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Momami F. A., Massadeh A. M. (2005) Effect of different heavy letal concentrations on Drosophila melanogaster larval growth and development. Biological Trace Element Res. 108, 271–277.CrossRefGoogle Scholar
  2. 2.
    Bourguet D. (2000) Fluctuating asymmetry and fitness in Drosophila melanogaster. J. Evol. Biol. 13, 515–521.CrossRefGoogle Scholar
  3. 3.
    Chapco W., Jones S. G., McDonnell W. B. (1978) Correlation between chromosome segments and fitness in Drosophila melanogaster. III. Differential genetic responses to zinc sulphate and seleno-cystine. Can. J. Genet. Cytol. 20, 555–565.CrossRefGoogle Scholar
  4. 4.
    Clarke G. M. (1993) Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality. Environ. Poll. 82, 207–211.CrossRefGoogle Scholar
  5. 5.
    Clarke G. M. (1995) Relationships between developmental stability and fitness: application for conservation biology. Conservation Biology 9, 18.CrossRefGoogle Scholar
  6. 6.
    Clarke G. M. (1998) Developmental stability and fitness: the evidence is not quite so clear. The American Naturalist 152, 762–766.CrossRefGoogle Scholar
  7. 7.
    Clarke G. M. (2003) Developmental stability — fitness relationships in animals: some theoretical considerations. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 187–198.Google Scholar
  8. 8.
    Dongen S. V. (2006) Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J. Evol. Biol. 19, 1727–1743.CrossRefGoogle Scholar
  9. 9.
    Durliat M., Bonneton, F., Boissoneau E., Andre M., Wegnez M. (1995) Expression of metalloth-ionein genes during the postembryonic development of Drosophila melanogaster. Biometals 8, 339–351.CrossRefGoogle Scholar
  10. 10.
    Freeman D. C., Graham J. H., Emlen J. M. et al. (2003) Plant development Instability: new measures, applications and regulation. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 367–386.Google Scholar
  11. 11.
    Gill H. J., Nida D. L., Dean D. A., England M. W., Bruce Jacobson J. (1989) Resistance of Drosophila to cadmium: biochemical factors in resistant and sensitive strains. Toxicology 56, 315–321.CrossRefGoogle Scholar
  12. 12.
    Gillespie R. B., Guttman S. I. (1999) Chemical-induced changes in the genetic structure of populations: Effects on allozymes. In: Forbes V. E. (ed.) Genetics and Ecotoxicology. Taylor and Francis, pp. 55–77.Google Scholar
  13. 13.
    Graham J. H., Roe K. E., West T. B. (1993) Effects of lead and benzene on the developmental stability of Drosophila melanogaster. Ecotoxicology 2, 185–195.CrossRefGoogle Scholar
  14. 14.
    Hendrickx F., Maelfait, J.-P., Lens L. (2003) Relationship between fluctuating asymmetry and fitness within and between stressed and unstressed populations of the wolf spider Pirata piraticus. J. Evol. Biol. 16, 1270–1279.CrossRefGoogle Scholar
  15. 15.
    Hoffmann A. A., Woods R. E. (2001) Trait variability and stress; canalization, developmental stability and the need for a broad approach. Ecol. Letters 4, 97–101.CrossRefGoogle Scholar
  16. 16.
    Hoffmann A. A., Woods R. E. (2003) Associating environmental stress with developmental stability: problems and patterns. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 387–401.Google Scholar
  17. 17.
    Kalajdzic P., Stamenkovic-Radak M., Andjelkovic M. (2006) The effect of different concentrations of lead on inversion polymorphism in Drosophila subobscura. Hereditas 138, 241–243.Google Scholar
  18. 18.
    Kohler R. H., Zanger M., Eckwert H., Einfeldt I. (2000) Selection favours low Hsp70 levels in chronically metal-stressed soil arthropods. J. Evol. Biol. 13, 569–582.CrossRefGoogle Scholar
  19. 19.
    Krimbas C. B. (1993) Drosophila subobscura. Biology, Genetics and Inversion Polymorphism. Kovac Verlag.Google Scholar
  20. 20.
    Leary R. F., Allendorf F. W. (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4, 214–217.CrossRefGoogle Scholar
  21. 21.
    Macnair M. (1997) The evolution of plants in metal-contaminated environments. In: Bijlsma R., Loeschcke V. (eds) Environmental Stress, Adaptation and Evolution. Birkhauser Verlag, Basel, pp. 4–24.Google Scholar
  22. 22.
    Magnusson J., Ramel C. (1986) Genetic variation in the susceptibility to mercury and other metal compounds in Drosophila melanogaster Teratog. Carcinog. Mutagen. 6, 289–305.CrossRefGoogle Scholar
  23. 23.
    Maroni G., Watson D. (1985) Uptake and binding of cadmium, copper and zinc in Drosophila melanogaster larvae. Insect Biochem. 15, 55–63.CrossRefGoogle Scholar
  24. 24.
    Møller A. P., Swaddle J. P. (1997) Asymmetry, Developmental Stability and Evolution. Oxford University Press.Google Scholar
  25. 25.
    Møller A. P. (1999) Asymmetry as a predictor of growth, fecundity and survival. Ecol. Letters 2, 149–156.CrossRefGoogle Scholar
  26. 26.
    Møller A. P., Cuervo J. J. (2003) Asymmetry, size and sexual selection: factors affecting heterogeneity in relationships between asymmetry and sexual selection. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 262–278.Google Scholar
  27. 27.
    Nriagu J. O., Pacyna J. M. (1988) Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature 333, 134–139.CrossRefGoogle Scholar
  28. 28.
    Palmer R. A., Strobeck C. (2001) Fluctuating Asymmetry Analysis Revisited. Oxford University Press.Google Scholar
  29. 29.
    Polak M., Kroeger D. E., Cartwright I. L., Ponce de Leon C. (2004) Genotype-specific responses of fluctuating asymmetry and of preadult survival to the effects of lead and temperature stress in Drosophila melanogaster. Environ. Pollution 127, 145–155.CrossRefGoogle Scholar
  30. 30.
    Posthuma L., van Straalen N. M. (1993) Heavy metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp. Pharmacol. Toxicol. 106, 11–38.Google Scholar
  31. 31.
    Rosenheim J. A., Johnson M. W., Mau R. F. L., Welter S. C. (1996) Biochemical preadaptations, founder events, and the evolution of resistance in arthropods. J. Econ. Entomol. 89, 263–273.CrossRefGoogle Scholar
  32. 32.
    Rutherford S. L., Lindquist S. (1998) Hsp90 as a capacitor for morphological variation. Nature 396, 336–342.CrossRefGoogle Scholar
  33. 33.
    Santos M. (2002) Genetics of wing size asymmetry in Drosophila buzzatii. J. Evol. Biol. 15, 720–734.CrossRefGoogle Scholar
  34. 34.
    Schell L. M., Ulijiaszek S. J. (eds) (1999) Urbanism, Health and Human Biology in Industrialized Countries. Society for the Study of Human Biology Symposium 40. New York, NY, Cambridge University Press.CrossRefGoogle Scholar
  35. 35.
    Shirley M. D. R, Sibly R. M. (1999) Genetic basis of a between-environment trade-off involving resistance to cadmium in Drosophila melanogaster. Evolution 53, 826–836.CrossRefGoogle Scholar
  36. 36.
    Sibly R. M., Calow P. (1989) A life-cycle theory of responses to stress. Biol. Linnean Society 37, 101–116.CrossRefGoogle Scholar
  37. 37.
    Sperlich D., Feuerbach H. (1966) 1st der chromosomale Strukturpolymorphismus von Drosophila subobscura stabil oder flexible? Z. induct. Abstamm. U. Vererblehre 98, 16–24.Google Scholar
  38. 38.
    Stige, L.C., Hessen D. O., Vollestad L. A. (2006) Fitness, developmental instability and the ontogeny of fluctuating asymmetry in Daphnia magna. Biol. Society 88, 179–192.Google Scholar
  39. 39.
    Zakharov V. M. (2003) Linking developmental stability and environmental stress: a whole organism approach. In: M. Polak (ed.) Developmental Instability: Causes and Consequences. Oxford University Press, pp. 402–414.Google Scholar
  40. 40.
    Zar H. J. (1999) BiostatisticalAnalysis. Prentice-Hall. Upper Saddle River. New Jersey, USA.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Marina Stamenkovic-Radak
    • 1
    • 2
    Email author
  • P. Kalajdzic
    • 1
  • Tatjana Savic
    • 2
  • Marija Savic
    • 1
  • Zorana Kurbalija
    • 2
  • Gordana Rasic
    • 1
  • M. Andjelkovic
    • 1
    • 2
  1. 1.Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Biological ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations