Acta Biologica Hungarica

, Volume 58, Supplement 1, pp 95–111 | Cite as

Definition of Drosophila Hemocyte Subsets by Cell-Type Specific Antigens

  • Éva Kurucz
  • B. Váczi
  • R. Márkus
  • Barbara Laurinyecz
  • P. Vilmos
  • J. Zsámboki
  • Kinga Csorba
  • Elisabeth Gateff
  • D. Hultmark
  • I. AndóEmail author


We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.


Drosophila hemocyte antigen hemocyte subpopulation monoclonal antibody hemocyte development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asha, H., Nagy, I., Kovacs, G., Stetson, D., Ando, I., Dearolf, C. R. (2003) Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics 163, 203–215.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Braun, A., Lemaitre, B., Lanot, R., Zachary, D., Meister, M. (1997) Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap. Genetics 147, 623–634.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Delpuech, J.-M, Frey, F., Carton, Y. (2005) Action of insecticides on the cellular immune reaction of Drosophila melanogaster against the parasitoid Leptopilina Boulardi. Environm. Toxicol. Chem. 15, 2267–2271.CrossRefGoogle Scholar
  4. 4.
    Elrod-Erickson, M., Mishra, S., Schneider, D. (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol. 10, 781–784.CrossRefGoogle Scholar
  5. 5.
    Gillespie, J. P., Kanost, M. R., Trenczek, T. (1997) Biological mediators of insect immunity. Ann. Rev. Entomol. 42, 611–643.CrossRefGoogle Scholar
  6. 6.
    Hoffmann, J. A. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7, 4–10.CrossRefGoogle Scholar
  7. 7.
    Hultmark, D. (1993) Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 5, 178–183.CrossRefGoogle Scholar
  8. 8.
    Jung, S. H., Evans, C. J., Uemura, C., Banerjee, U. (2005) The Drosophila lymph gland as a developmental model of hematopoiesis. Developm. 132, 2521–2533.Google Scholar
  9. 9.
    Kiger, J. A., Natzle, J. E., Green, M. M. (2001) Hemocytes are essential for wing maturation in Drosophila melanogaster. Proc. Natl. Acad. Sci. 98, 10190–10195.CrossRefGoogle Scholar
  10. 10.
    Kishimoto, T. (1997) Leucocyte Typing VI, White Cell Differentiation Antigens. Oxford University Press.Google Scholar
  11. 11.
    Kocks, C., Cho, J. H., Nehme, N., Ulvila, J, Pearson, A. M, Meister, M., Strom, C., Conto, S. L., Hetru, C., Stuart, L. M, Stehle, T., Hoffmann, J. A., Reichhart, J. M., Ferrandon, D., Ramet, M., Ezekowitz, R. A. (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335–346.CrossRefGoogle Scholar
  12. 12.
    Konrad, L., Becker, G., Schmidt, A., Klockner, T., Kaufer-Stillger, G., Dreschers, S., Edstrom, J. E., Gateff, E. (1994) Cloning, structure, cellular localization, and possible function of the tumor suppressor gene lethal(3)malignant blood neoplasm-1 of Drosophila melanogaster. Dev. Biol. 163, 98–111.CrossRefGoogle Scholar
  13. 13.
    Kohler, G., Milstein, C. (1976) Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur. J. Immunol. 7, 511–519.CrossRefGoogle Scholar
  14. 14.
    Kurucz, E., Zettervall, C. J., Sinka, R., Vilmos, P., Pivarcsi, A., Ekengren, S., Hegedus, Z., Ando, I., Hultmark, D. (2003) Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc. Natl. Acad. Sci. USA 100, 2622–2627.CrossRefGoogle Scholar
  15. 15.
    Kurucz, E., Markus, R., Zsamboki, J., Folkl-Medzihradszky, K., Darula, Zs., Vilmos, P., Udvardy, A., Krausz, I., Lukacsovich, T., Gateff, E., Zettervall, C.-J., Hultmark, D., Ando, I. (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol. 17, 649–654.CrossRefGoogle Scholar
  16. 16.
    Lanot, R., Zachary, D., Holder, F., Meister, M. (2001) Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243–257.CrossRefGoogle Scholar
  17. 17.
    Lebestky, T., Chang, T., Hartenstein, V., Banerjee, U. (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146–149.CrossRefGoogle Scholar
  18. 18.
    Markus, R., Kurucz, E., Rus, F., Ando, I. (2005) Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster. Immunol. Lett. 101, 108–111.CrossRefGoogle Scholar
  19. 19.
    Mathey-Prevot, B., Perrimon, N. (1998) Mammalian and Drosophila blood: JAK of all trades? Cell. 92, 697–700.CrossRefGoogle Scholar
  20. 20.
    Meister, M., Lagueux, M. (2003) Drosophila blood cells. Cell. Microbiol. 5, 573–580.CrossRefGoogle Scholar
  21. 21.
    Ramet, M., Pearson, A., Manfruelli, P., Li, X., Koziel, H., Gobel, V., Chung, E., Krieger, M., Ezekowitz, R. A. (2001) Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 6, 1027–1038.CrossRefGoogle Scholar
  22. 22.
    Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B., Ezekowitz, R A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648.CrossRefGoogle Scholar
  23. 23.
    Ritzki, T. M. (1978) Fat body. In: Ashburner, A., Wright, T. R. F. (eds) The Genetics and Biology of Drosophila, Vol 2b, Academic Press, New York. pp. 561–601.Google Scholar
  24. 24.
    Rizki, R. M., Rizki, T. M. (1984) The cellular deffence system of Drosophila melanogaster. In: King, R. C., Akal, H. (eds) Insect Ultrastructure, Volume 2. New York, Plenum Publishing Corporation, pp. 579–604.CrossRefGoogle Scholar
  25. 25.
    Roos, E., Bjorklund, G., Engstrom, Y. (1998) In vivo regulation of tissue-specific and LPS-inducible expression of the Drosophila Cecropin genes. Insect Mol. Biol. 7, 51–62.CrossRefGoogle Scholar
  26. 26.
    Rus, F., Kurucz, E., Markus, R., Sinenko, S. A., Laurinyecz, B., Pataki, C., Gausz, J., Hegedus, Z., Udvardy, A., Hultmark, D., Ando, I. (2006) Expression pattern of Filamin-240 in Drosophila blood cells. Gene Expr. Patterns 8, 928–934.CrossRefGoogle Scholar
  27. 27.
    Shrestha, R., Gateff, E. (1982) Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster. Dev. Growth Differ. 24, 65–82.CrossRefGoogle Scholar
  28. 28.
    Sokol, N., Cooley, L. (1999) Drosophila filamin encoded by the cheerio locus is a component of ovarian ring canals. Curr. Biol. 9, 1221–1230.CrossRefGoogle Scholar
  29. 29.
    Vilmos, P., Kurucz, E. (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62, 59–66.CrossRefGoogle Scholar
  30. 30.
    Vilmos, P., Nagy, I., Kurucz, E., Hultmark, D., Gateff, E., Ando, I. (2004) A rapid rosetting method for separation of hemocyte sub-populations of Drosophila melanogaster. Dev. Comp. Immunol. 28, 555–563.CrossRefGoogle Scholar
  31. 31.
    Zettervall, C. I., Anderl, I., Williams, M. J., Palmer, R., Kurucz, E., Ando, I., Hultmark, D. (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 101, 14192–14197.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Éva Kurucz
    • 1
  • B. Váczi
    • 1
  • R. Márkus
    • 1
  • Barbara Laurinyecz
    • 1
  • P. Vilmos
    • 1
  • J. Zsámboki
    • 1
  • Kinga Csorba
    • 1
  • Elisabeth Gateff
    • 2
  • D. Hultmark
    • 3
  • I. Andó
    • 1
    Email author
  1. 1.Biological Research Center of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Institut für GenetikJohannes Gutenberg Universität MainzMainzGermany
  3. 3.Umea Center for Molecular PathologyUmea UniversityUmeaSweden

Personalised recommendations