Advertisement

Acta Biologica Hungarica

, Volume 58, Supplement 1, pp 37–49 | Cite as

Overlaps between the Various Biodegradation Pathways in sphingomonas Subarctica SA1

  • Mónika Magony
  • Ildikó Kákonyi
  • Anna Gara
  • P. Rapali
  • Katalin Perei
  • K. L. Kovács
  • G. RákhelyEmail author
Article

Abstract

A bacterium capable to grow on sulfanilic acid as sole carbon, nitrogen and sulfur source has been isolated. A unique feature of this strain is that it contains the full set of enzymes necessary for the biodegra-dation of sulfanilic acid. Taxonomical analysis identified our isolate as Sphingomonas subarctica SA1 sp. The biodegradation pathway of sulfanilic acid was investigated at the molecular level. Screening the substrate specificity of the strain disclosed its capacity to degrade six analogous aromatic compounds including p-aminobenzoic acid. Moreover, the strain was successfully used for removal of oil contaminations. S. subarctica SA1 seemed to use distinct enzyme cascades for decomposition of these molecules, since alternative enzymes were induced in cells grown on various substrates. However, the protein patterns appearing upon induction by sulfanilic acid and sulfocatechol were very similar to each other indicating common pathways for the degradation of these substrates. Cells grown on sulfanilic acid could convert p-aminobenzoic acid to some extent and vice versa. Two types of ring cleaving dioxygenases were detected in the cells grown on various substrates: one preferred protocatechol, while the other had higher activity with sulfocatechol. This latter enzyme, named as sulfocatechol dioxygenase was partially purified and characterized.

Keywords

Biodegradation dioxygenase Sphingomonas subarctica sulfanilic acid 

Abbreviations

3,5-HBA

3,5-dihydroxybenzoic acid

4-HBA

4-hydroxybenzoic acid

PABA

p-aminobenzoic acid

PC

protocatechol

SA

sulfanilic acid

SC

sulfocatechol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, D. R., Sharma, N. D., Allen, C. C. R. (2001) Aromatic dioxygenases: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 12, 564–573.CrossRefGoogle Scholar
  2. 2.
    Bugg, T. D. H. (2001) Oxygenases: mechanisms and structural motifs for O2 activation. Curr. Opin. Chem. Biol. 5, 550–555.CrossRefGoogle Scholar
  3. 3.
    Contzen, M., Burger, S., Stolz, A. (2001) Cloning of the genes for a 4-sulphocatechol-oxidizing pro-tocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol. Mol. Microbiol. 41, 199–205.CrossRefGoogle Scholar
  4. 4.
    Dangmann, E., Stolz, A., Kuhm, A. E., Hammer, A., Feigel, B., Noisommit-Rizzi, N., Rizzi, M., Reuss, M., Knackmuss, H.-J. (1996) Degradation of 4-aminobenzenesulfonate by a two-species bacterial coculture. Biodegradation 7, 223–229.CrossRefGoogle Scholar
  5. 5.
    Dua, M., Singh, A., Sethunathan, N., Johri, A. K. (2002) Biotechnology and bioremediation: successes and limitations. Appl. Microbiol. Biotechnol. 59, 143–152.CrossRefGoogle Scholar
  6. 6.
    Feigel, B. J., Knackmuss, H.-J. (1988) Bacterial catabolism of sulfanilic acid via catechol-4-sulfon-ic acid. FEMS Microbiol. Lett. 55, 113–118.CrossRefGoogle Scholar
  7. 7.
    Feigel, B. J., Knackmuss, H.-J. (1993) Syntrophic interactions during degradation of 4-aminoben-zenesulfonic acid by a two species bacterial culture. Arch. Microbiol. 159, 124–130.CrossRefGoogle Scholar
  8. 8.
    Gibson, D. T., Parales, R. E. (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 11, 236–243.CrossRefGoogle Scholar
  9. 9.
    Heider, J., Fuchs, G. (1997) Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243, 577–596.CrossRefGoogle Scholar
  10. 10.
    Hammer, A., Stolz, A., Knackmuss, H.-J. (1996) Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol. Arch. Microbiol. 166, 92–100.CrossRefGoogle Scholar
  11. 11.
    Harayama, S., Kok, M., Neidle, E. L. (1992) Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46, 565–601.CrossRefGoogle Scholar
  12. 12.
    Mason, J. R., Cammack, R. (1992) The electron-transport proteins of hydroxylating bacterial dioxy-genases. Annu. Rev. Microbiol. 46, 277–305.CrossRefGoogle Scholar
  13. 13.
    Nohynek, L. J., Nurmiaho-Lassila, E. L., Suhonen, E. L., Busse, H. J., Mohammadi, M., Hantula, J., Rainey, F., Salkinoja-Salonen, M. S. (1996) Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctic a sp. nov. Int. J. Syst. Bacteriol. 46, 1042–1055.CrossRefGoogle Scholar
  14. 14.
    Perei, K., Rakhely, G., Kiss, I., Polyak, B., Kovacs, K. L. (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl. Microbiol. Biotechnol. 55, 101–107.CrossRefGoogle Scholar
  15. 15.
    Sambrook, J., Maniatis, T., Fritsch, E. F. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  16. 16.
    Van der Meer, J. R., de Vos, W. M., Harayama, S., Zehnder, A. J. B. (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56, 677–694.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mónika Magony
    • 1
  • Ildikó Kákonyi
    • 1
  • Anna Gara
    • 1
  • P. Rapali
    • 1
  • Katalin Perei
    • 1
  • K. L. Kovács
    • 1
  • G. Rákhely
    • 1
    • 2
    Email author
  1. 1.Department of BiotechnologyUniversity of SzegedSzegedHungary
  2. 2.Institute of Biophysics, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations