Advertisement

Acta Biologica Hungarica

, Volume 58, Supplement 1, pp 11–22 | Cite as

Characterization of the Activity of Heavy Metal-Responsive Promoters in the Cyanobacterium Synechocystis PCC 6803

  • Loredana Peca
  • P. B. Kós
  • I. VassEmail author
Article

Abstract

Aiming at developing cyanobacterial-based biosensors for heavy metal detection, expression of heavy metal inducible genes of the cyanobacterium Synechocystis PCC 6803 was investigated by quantitative RT-PCR upon 15 minutes exposure to biologically relevant concentrations of Co2+, Zn2+, Ni2+, Cd2+, Cr6+, As3+ and As5+. The ziaA gene, which encodes a Zn2+-transporting P-type ATPase showed a markedly increased mRNA level after incubation with Cd2+ and arsenic ions, besides the expected induction by Zn2+ ions. The Co2+ efflux system-encoding gene coaTwas strongly induced by Co2+ and Zn2+ ions, moderately induced by As3+ ions, and induced at a relatively low level by Cd2+ and As5+ ions. Expression of nrsB, which encodes a part of a putative Ni2+ efflux system was highly induced by Ni2+ salts and at a low extent by Co2+ and Zn2+ salts. The arsB gene, which encodes a putative arsenite-specific efflux pump was highly induced by As3+ and As5+ ions, while other metal salts provoked insignificant transcript level increase. The transcript of chrA, in spite of the high sequence similarity of its protein product with several bacterial chromate transporters, shows no induction upon Cr6+ salt exposure. We conclude that due to the largely unspecific heavy metal response of the studied genes only nrsB and arsB are potential candidates for biosensing applications for detection of Ni2+ and arsenic pollutants, respectively.

Keywords

Cyanobacteria gene induction heavy metal stress Synechocystis PCC 6803 biosensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, L. J., Gautier, S. M., Coulet, P. R. (1989) Design of luminescence photobiosensors. J. Bio-lumin. Chemilumin. 4, 543–550.CrossRefGoogle Scholar
  2. 2.
    Cervantes, C., Ohtake, H., Chu, L., Misra, T. K., Silver, S. (1990) Cloning, nucleotide-sequence, and expression of the chromate resistance determinant of Pseudomonas-Aeruginosa plasmid Pum505. J. Bacteriol. 172, 287–291.CrossRefGoogle Scholar
  3. 3.
    Garcia-Dominguez, M., Lopez-Maury, L., Florencio, F. J., Reyes, J. C. (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 182, 1507–1514.CrossRefGoogle Scholar
  4. 4.
    Kaneko, T., Tanaka, A., Sato, S., Kotani, H., Sazuka, T., Miyajima, N., Sugiura, M., Tabata, S. (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNARes. 2, 153–166.Google Scholar
  5. 5.
    Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., Tabata, S. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136.CrossRefGoogle Scholar
  6. 6.
    Liao, V. H. C., Chien, M. T., Tseng, Y. Y., Ou, K. L. (2006) Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ. Pollut. 142, 17–23.CrossRefGoogle Scholar
  7. 7.
    Lopez-Maury, L., Florencio, F. J., Reyes, J. C. (2003) Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 185, 5363–5371.CrossRefGoogle Scholar
  8. 8.
    Lopez-Maury, L., Garcia-Dominguez, M., Florencio, F. J., Reyes, J. C. (2002) A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 43, 247–256.CrossRefGoogle Scholar
  9. 9.
    Mohamed, A., Janson, C. (1989) Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol. Biol. 13, 693–700.CrossRefGoogle Scholar
  10. 10.
    Mukhopadhyay, R., Rosen, B. P., Pung, L. T., Silver, S. (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26, 311–325.CrossRefGoogle Scholar
  11. 11.
    Neyt, C., Iriarte, M., Thi, V. M., Cornells, G. R. (1997) Virulence and arsenic resistance inyersiniae. J. Bacteriol. 179, 612–619.CrossRefGoogle Scholar
  12. 12.
    Nicholson, M. L., Laudenbach, D. E. (1995) Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and cysR. J. Bacteriol. 177, 2143–2150.CrossRefGoogle Scholar
  13. 13.
    Nies, A., Nies, D. H., Silver, S. (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265, 5648–5653.PubMedGoogle Scholar
  14. 14.
    Nies, D. H., Koch, S., Wachi, S., Peitzsch, N., Saier, M. H. (1998) CHR, a novel family of prokary-otic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J. Bacterial. 180, 5799–5802.Google Scholar
  15. 15.
    Nies, D. H., Nies, A., Chu, L., Silver, S. (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 86, 7351–7355.CrossRefGoogle Scholar
  16. 16.
    Nucifora, G., Chu, L., Misra, T. K., Silver, S. (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86, 3544–3548.CrossRefGoogle Scholar
  17. 17.
    Ramanathan, S., Shi, W. R., Rosen, B. P., Daunert, S. (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal. Chem. 69, 3380–3384.CrossRefGoogle Scholar
  18. 18.
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., Stanier, R. Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.Google Scholar
  19. 19.
    Rosen, B. P. (2002) Biochemistry of arsenic detoxification. FEES Lett. 529, 86–92.CrossRefGoogle Scholar
  20. 20.
    Rutherford, J. C., Cavet, J. S., Robinson, N. J. (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem. 274, 25827–25832.CrossRefGoogle Scholar
  21. 21.
    Shi, W. P., Wu, J. H., Rosen, B. P. (1994) Identification of a putative metal-binding site in a new family of metalloregulatory proteins. J. Biol. Chem. 269, 19826–19829.PubMedGoogle Scholar
  22. 22.
    Silver, S., Phung, L. T. (1996) Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50, 753–789.CrossRefGoogle Scholar
  23. 23.
    Silver, S., Phung, L. T. (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71, 599–608.CrossRefGoogle Scholar
  24. 24.
    Tauriainen, S., Karp, H., Chang, W., Virta, M. (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl. Environ. Microbiol. 63, 4456–4461.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Thelwell, C., Robinson, N. J., Turner-Cavet, J. S. (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. USA 95, 10728–10733.CrossRefGoogle Scholar
  26. 26.
    Tong, L., Nakashima, S., Shibasaka, M., Katsuhara, M., Kasamo, K. (2002) A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance. J. Bacteriol. 184, 5027–5035.CrossRefGoogle Scholar
  27. 27.
    Trevors, J. T., Stratton, G. W., Gadd, G. M. (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol. 32, 447–464.CrossRefGoogle Scholar
  28. 28.
    Turner, J. S., Robinson, N. J. (1995) Cyanobacterial metallothioneins-biochemistry and molecular genetics. J. Ind. Microbiol. 14, 119–125.CrossRefGoogle Scholar
  29. 29.
    Wysocki, R., Bobrowicz, P., Ulaszewski, S. (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J. Biol. Chem. 272, 30061–30066.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Plant Biology, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations