Acta Biologica Hungarica

, Volume 58, Supplement 1, pp 139–148 | Cite as

An All Optical Microfluidic Sorter

  • H. I. Kirei
  • L. Oroszi
  • S. Valkai
  • P. OrmosEmail author


We present a microfluidic cell sorter that is able to count, characterize and sort micrometer sized particles and cells. In addition to optical counting and characterization, also sorting is performed by optical forces. The device is optimized for simplicity. The microfluidic channels and optical waveguides that carry the illuminating, detecting and sorting light form a single integrated structure, all built from the same material in a single photopolymerization step.


Cell particles optical counting FACS photopolymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Applegate, Jr R. W., Squier, J., Vestad, T., David, J. O., Marr, W. M., Bado, R., Dugand, M. A., Saidd, A. A. (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab-on-a-Chip 6, 422–426.CrossRefGoogle Scholar
  2. 2.
    Ashkin, A., Dziedzic, J. M. (1987) Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520.CrossRefGoogle Scholar
  3. 3.
    Chena, C. C., Zappe, S., Sahin, O., Zhang, X. J., Fish, M., Scott, M, Solgaard, O. (2004) Design and operation of a microfluidic sorter for Drosophila embryos. Sensors and Actuators B102, 59–66.Google Scholar
  4. 4.
    Cizmar, T., Siler, M., Sery, M., Zemanek, P., Garces-Chavez, V., Dholakia, K. (2006) Optical sorting and detection of submicrometer objects in a motional standing wave. Phys. Rev. B74, 035105.CrossRefGoogle Scholar
  5. 5.
    Eriksson, E., Enger, J., Nordlander, B., Erjavec, N., Ramser, K., Goksör, M., Hohmann, S., Nyström, T., Hanstorp, D. (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab-on-a-Chip (in press).Google Scholar
  6. 6.
    Givan, A. L. (2001) Flow Cytometry-First Principles, 2nd ed., Wiley Liss, New York.CrossRefGoogle Scholar
  7. 7.
    Hertzberg, R. P., Pope, A. J. (2004) High-throughput screening: New technology for the 21st century. Curr. Opin. Chem. Biol. 2000, 445.Google Scholar
  8. 8.
    Juarez-Martinez, G., Steinmann, P., Roszak, A. W., Isaacs, N. W., Cooper, J. M. (2002) High-throughout screens for postgenomics: Studies of protein crystallization using microsystems technology. Anal. Chem. 74, 3505.Google Scholar
  9. 9.
    Kruger, J., Singh, K., O’Neill, A., Jackson, C, Morrison, A., O’Brien, P. (2002) Development of a microfluidic device for fluorescence activated cell sorting. J. Micromech. Microeng. 12, 486–494.Google Scholar
  10. 10.
    Lee, G.-B., Fu, L.-M., Yang, R. Y., Pan, Y.-J. (2003) Micro flow cytometers using electrokinetic forces with integrated optical fibers for on-line cell particle counting and sorting. Proc. 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems, Squaw Valley, California, USA.Google Scholar
  11. 11.
    MacDonald, M. P., Splading, G. C., Dholakia, K. (2003) Microfluidic sorting in an optical lattice. Nature 426, 421.CrossRefGoogle Scholar
  12. 12.
    Wang, Z., El-Ali, J., Perch-Nielsen, I. R., Mogensen, K. B., Snakenborg, D., Kutter, J. P., Wolff, A. (2004) Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light. Proc. IEEE MEMS pp. 710–713.Google Scholar
  13. 13.
    Wang, M. M., Tu, E., Raymond, D. E., Yang, J. M., Zhang, Z., Hagen, N., Dees, B., Mercer, E. M., Forster, A. H., Kariv, I., Marchand, P. J., Butler, W. F. (2005) Microfluidic sorting of mammalian cells by optical force switching Nature Biotechnol. 23, 83–87.CrossRefGoogle Scholar
  14. 14.
    Whitesides, G. M. (2006) The origins and the future of microfluidics. Nature 442, 368–373.CrossRefGoogle Scholar
  15. 15.
    Wolff, A., Perch-Nielsen, I. R., Larsen, U. D., Friis, P., Goranovic, G., Poulsen, C. R., Kutter, J. P., Telleman, P. (2003) Integrating advanced functionality in a micro fabricated high-throughput fluorescent-activated cell sorter. Lab-on-a-Chip, 3, 22–27.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Biophysics, Biological Research CentreHungarian Academy of SciencesSzegedHungary

Personalised recommendations