Acta Biologica Hungarica

, Volume 58, Issue 4, pp 421–429 | Cite as

Cytological and Embryological Studies on Apospory in Bothriochloa ischaemum L.

  • G. H. MaEmail author
  • X. L. Huang


Cytological and embryological studies on apomictic species Bothriochloa ischaemum L. were carried out. Our studies revealed that the chromosome number of its root apical cells was 40, indicating that it was a tetraploid cytotype. During the stage of microsporogenesis, meiosis seemed irregular, as the pairing chromosome number of microspore mother cell was more than 20. It was often found that some chromosomes did not assemble in the equatorial plane or moved to the two poles of the cell, a few laggards were seen. Multiporate pollens (22.3%) were often observed. The studies showed that a high frequency (87.8%) of 1–3 or more aposporous embryo sacs developed in one ovule of the species. The mature aposporous sac was usually characterized by an egg cell and one polar nucleus. The egg cell could develop spontaneously into a large proembryo (100–200 μm) mass prior to anthesis. When several aposporous sacs occurred in the same ovule, usually 2 aposporous sacs were involved in pseudogamy and developed into separate endosperm masses in the same ovary. In the low frequency of mature seed, 13.5% twin-embryo seedlings could be obtained after mature seeds germinated.


Bothriochloa ischaemum L. apospory pseudogamy cytology embryology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The support by Program of Guangdong Digital Botanical Garden and the Tropical and Subtropical Plant Germplasm Construction in Guangdong Province 2005B60301001 is greatly acknowledged and article has been reviewed by an Australia scientist Dr. Eric Bunn in Kings Park and Botanic Garden was also acknowledged.


  1. 1.
    Asker, S. E., Jerling, L. (1992) Apomixis in Plants. CRC Press, London, pp. 100–190.Google Scholar
  2. 2.
    Bashaw, E. C., Hanna, W. W. (1990) Apomictic reproduction. In: Chapman, G. P. (ed.) Reproductive Versatility in the Grasses. Cambridge University Press, Cambridge, pp. 100–130.Google Scholar
  3. 3.
    Brown, W. V., Emery, W. H. P. (1958) Apomixis in the Gramineae: Panicoideae. Amer. J. Bot. 45, 253–263.CrossRefGoogle Scholar
  4. 4.
    Burson, B. L., Bennett, H. W. (1970) Cytology, method of reproduction, and fertility of Brunswick grass, Paspalum nicorae Parodi. Crop Sci. 10, 184–187.CrossRefGoogle Scholar
  5. 5.
    Burson, B. L. (1997) Apomixis and sexuality in some Paspalum species. Crop Sci. 37, 1347–1351.CrossRefGoogle Scholar
  6. 6.
    Cai, X., Mu, X. J., Zhu, Z. Q., Hua, Z. M. (1997) Poly-embryony and multiple seedlings in the apomictic plants. Acta Bot. Sin. 39, 590–595.Google Scholar
  7. 7.
    Celarier, R. P. (1957) The cyto-geography of the Bothriochloa ischaemum complex. II. Chromosome behavior. Amer. J. Bot. 44, 729–738.CrossRefGoogle Scholar
  8. 8.
    Celarier, R. P., Harlan, J. R. (1957) Apomixis in Bothriochloa, Dichanthium and Capillipedium. Phytomorph. 7, 93–102.Google Scholar
  9. 9.
    Celarier, R. P., Harlan, J. R. (1958) The cyto-geography of the Bothriochloa ischaemum complex. Gramineae. I. Taxonomy, and geographic distribution. J. Linn. Soc. (Bot.) 55, 755–760.CrossRefGoogle Scholar
  10. 10.
    Chapman, G. P. (1992) Grass Evolution and Domestication. Cambridge University Press, Cambridge, pp. 138–155.Google Scholar
  11. 11.
    Chen, S. L. (ed.) (1997) Flora Reipublicae Popularis Sinicae. 10(2). Science Press, pp. 143–145.Google Scholar
  12. 12.
    Christov, M. A., Moskova, R. (1972) The apomixis and the polyembryony in Bothriochloa ischaemum L. Genetika Selek. 5, 71–86.Google Scholar
  13. 13.
    Coleman, S. W., Taliaferro, C. M., Tyrl, R. J. (2004) Old World Bluestems. Warm Season Grasses. American Society of Agronomy, Madison, WI, pp. 909–936.Google Scholar
  14. 14.
    Czapik, R. (2000) Apomixis in monocotyledons. In: Jacobs, S. W. L., Everett, J. (eds) Grasses: Systematics and Evolution. CSIRO, Kerenhaven, pp. 316–321.Google Scholar
  15. 15.
    Dujardin, A. K., Hanna, W. (1984) Microsporogenesis, reproductive behavior and fertility in five Pennisetum species. Theor. Appl. Genet. 67, 197–210.CrossRefGoogle Scholar
  16. 16.
    Harlan, J. R., de Wet, J. M. J. (1963) Role of apomixes in the evolution of the Bothriochloa - Dicharrthium complex. Crop Sci. 3, 314–316.CrossRefGoogle Scholar
  17. 17.
    Harlan, J. R., Brooks, M. H., Borgaonker, D. S., de Wet, J. M. J. (1964) Nature and inheritance of apomixes in Bothriochloa and Dicharrthium. Bot. Gaz. 125, 41–46.CrossRefGoogle Scholar
  18. 18.
    Heslop-Harrison, J. (1961) The function of the glume pit and the control of cleistogamy in Bothriochloa docipiens (Hack). Phytomorph. 11, 378–383.Google Scholar
  19. 19.
    Ma, G. H., Zhao, N. X., Huang, X. L. (2001) Apomixis in the Gramineae. J. Trop. Subtrop. Bot. 9, 83–92.Google Scholar
  20. 20.
    Ma, G. H., Zhao, N. X., Huang, X. L. (2003) Facultative apospory in titraploid Paspalum distichum L. J. Trop. Subtrop. Bot. 11, 255–259.Google Scholar
  21. 21.
    Ma, G. H., Huang, X. L., Zhao, N. X., Xu, Q. S. (2004) Apospory in Paspalum thunbergii. Aust. J. Bot. 52, 81–86.CrossRefGoogle Scholar
  22. 22.
    Nakagawa, H. (1990) Embryo sac analysis and crossing procedure for breeding apomictic Guineagrass (Panicum maximum Jacq). Japan Agri. Res. Quart. 24, 163–168.Google Scholar
  23. 23.
    Quarin, C. L., Burson, B. L. (1991) Cytology of sexual and apomictic Paspalum species. Cytologia 56, 223–228.CrossRefGoogle Scholar
  24. 24.
    Quarin, C. L., Pozzobon, M. T., Valls, J. F. M. (1996) Cytology and reproductive behavior of diploid, tetraploid and hexaploid germplasm accessions of a wild forage grass Paspalum compressifolitm. Euphytica 90, 345–349.CrossRefGoogle Scholar
  25. 25.
    Vielle-Calzada, J. P., Crane, C. F., Stelly, D. M. (1996) Apomixis: the asexual revolution. Science 274, 1322–1323.CrossRefGoogle Scholar
  26. 26.
    Wen, X. S., Ye, X. L., Li, Y. Q., Chen, Z. L. (1998) Embryological studies on apomixes in Pennisetum squamulatum. Acta Bot. Sin. 40, 598–604.Google Scholar
  27. 27.
    Young, B. A., Sherwood, R. T., Bashaw, E. C. (1979) Cleared pistil and thick-sectioning techniques for detecting aposporous apomixis in grass. Can. J. Bot. 57, 1668–1672.CrossRefGoogle Scholar
  28. 28.
    Yu, P., Prakash, N., Whalley, R. D. B. (2003) Sexual and apomictic seed development in the vulnerable grass Bothriochloa biloba ST Blake. Aust. J. Bot. 51, 75–84.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.South China Botanical GardenThe Chinese Academy of SciencesGuangzhouChina
  2. 2.College of Life SciencesZhongshan UniversityGuangzhouChina

Personalised recommendations