Advertisement

Acta Biologica Hungarica

, Volume 58, Issue 4, pp 335–343 | Cite as

Pinealectomy and Melatonin Administration in Rats: Their Effects on Plasma Leptin Levels and Relationship with Zinc

  • A. K. BaltaciEmail author
  • R. Mogulkoc
Article

Abstract

The aim of this study was to examine effects of pinealectomy and melatonin administration plasma leptin levels and its relationship with zinc in rats. The study was conducted on 40 adult male Sprague-Dawley rats. They were divided into four groups each containing 10 animals. Group 1 served as control. Group 2 was pinealectomized group. Animals in Group 3 were pinealectomized and injected with melatonin (3 mg/kg/day, ip). Group 4 received melatonin alone (3 mg/kg/day, ip). At the end of the experiments, all animals were decapitated and trunk blood collected. Plasma leptin and zinc levels were determined by radioimmunoassay and Atomic Absorption Spectrophotometer methods, respectively. Although mean weights of the animals at the beginning were not significantly different among the groups, the mean weight of the pinealectomized group was found to be significantly lower than all other groups at the end of a six-month period (p < 0.01). Plasma leptin and zinc levels were the highest in mela-tonin-administered group (group 4; p < 0.01). The lowest plasma leptin and zinc levels were obtained in the pinealectomized group (group 2; p < 0.01). Changes in these two parameters were not statistically significant in groups 1 and 3. Our findings indicate that pinealectomy results in a decrease in leptin and zinc levels in rats, and that melatonin administration to pinealectomized rats prevents the decrease in the these parameters. In addition, long-term administration of melatonin to rats leads to an increase in both leptin and zinc concentrations.

Keywords

Pinealectomy melatonin administration leptin zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Supported in part by a Research Fund of Selcuk University Grant no: TF 2001/045. We would like to thank to Dr. Bayram Yilmaz of Firat University Medical School for his critical evaluation and English correction of the manuscript.

References

  1. 1.
    Alonso-Vale, M. I., Anhe, G. F., Borges-Silva, C. N., Andreotti, S., Peres, S. B., Cipolla-Neto, J., Lima, F. B. (2004) Pinealectomy alters adipose tissue adaptability to fasting in rats. Metabolism 53, 500–506.PubMedGoogle Scholar
  2. 2.
    Bado, A., Levasseur, S., Attoub, S., Kermorgant, S., Laigneau, J. P., Bortoluzzi, M. N., Moizo, L., Lehy, T., Guerre-Millo, M., Le Marchand-Brustel, Y., Lewin, M. J. (1998) The stomach is a source of leptin. Nature 394, 790–793.PubMedGoogle Scholar
  3. 3.
    Baltaci, A. K., Mogulkoc, R., Bediz, C. S., Kul, A., Ugur, A. (2003) Pinealectomy and zinc deficiency have opposite effects on thyroid hormones in rats. Endocr. Res. 29, 473–481.PubMedGoogle Scholar
  4. 4.
    Baltaci, A. K., Mogulkoc, R., Kul, A., Bediz, C. S., Ugur, A. (2004) Opposite effects of zinc and melatonin on thyroid hormones in rats. Toxicology 195, 69–75.PubMedGoogle Scholar
  5. 5.
    Baydas, G., Gursu, F., Canpolat, S., Konar, V., Yasar, A., Canatan, H., Kelestimur, H. (2001) Effects of pinealectomy on the circadian release pattern of leptin in male rat. Neuroendocrinol. Lett. 22, 449–452.PubMedGoogle Scholar
  6. 6.
    Bediz, C. S., Baltaci, A. K., Mogulkoc, R. (2003) Both zinc deficiency and supplementation affect plasma melatonin levels in rats. Acta. Physiol. Hung. 90, 353–359.Google Scholar
  7. 7.
    Bribiescas, R. G. (2003) Effects of oral zinc supplementation on serum leptin levels in ache males of eastern Paraguay. Am. J. Hum. Biol. 15, 681–687.PubMedGoogle Scholar
  8. 8.
    Canpolat, S., Sandal, S., Yilmaz, B., Yasar, A., Kutlu, S., Baydas, G., Kelestimur, H. (2001) Effects of pinealectomy and exogenous melatonin on serum leptin levels in male rat. Eur. J. Pharmacol. 428, 145–148.PubMedGoogle Scholar
  9. 9.
    Chehab, F., Lim, M., Lu, R. (1996) Correction of sterility defect in homozygous obese female mice treated with human recombinant leptin. Nat. Genet. 12, 318–320.PubMedGoogle Scholar
  10. 10.
    Chen, M. D., Lin, P. Y. (2000) Zinc-induced hyperleptinemia relates to the amelioration of sucrose-induced obesity with zinc repletion. Obes. Res. 8, 525–529.PubMedGoogle Scholar
  11. 11.
    Chen, M. D., Song, Y. M., Lin, P. Y. (2000) Zinc may be a mediator of leptin production in humans. Life Sci. 66, 214–219.Google Scholar
  12. 12.
    Collins, S., Kuhn, C. M., Petro, A. E., Swick, A. G., Chrunyk, B. A., Surwit, R. S. (1996) Role of leptin in fat regulation. Nature 380, 677.Google Scholar
  13. 13.
    Considine, R. V., Sinha, M. K., Heiman, M. L., Kriauciunas, A., Stephens, T. W., Nyce, M. R., Ohannesian, J. P., Marco, C. C., McKee, L. J., Bauer, T. L., José, F., Caro, J. F. (1996) Serum immunoreactive-Leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295.PubMedGoogle Scholar
  14. 14.
    Emilsson, V., Liu, Y. L., Cawthorne, M. A., Morton, N. M., Davenport, M. (1997) Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 46, 313–316.PubMedGoogle Scholar
  15. 15.
    Fraker, P. J., Jardieu, P., Cook, J. (1987) Zinc deficiency and immune function. Arch. Dermatol. 123, 1699–1701.PubMedGoogle Scholar
  16. 16.
    Gainsford, T., Wilson, T. A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., Nicola, N. A., Alexander, W. S., Hilton, D. J. (1996) Leptin can induce proliferation, differentiation and functional activation of hemopoietic cells. Proc. Natl. Acad Sci. U.S.A. 93, 14564–14568.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Jahnke, G., Marr, M., Myers, C., Wilson, R., Travlos, G., Price, C. (1999) Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol. Sci. 50, 271–279.PubMedGoogle Scholar
  18. 18.
    Johnson, S. (2001) Micronutrient accumulation and depletion in schizophrenia, epilepsy, autism and Parkinson’s disease? Med. Hypotheses 56, 641–645.PubMedGoogle Scholar
  19. 19.
    Kamohara, S., Burcelin, R., Halas, J. L., Friedman, J. M., Charron, M. J. (1997) Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377.PubMedGoogle Scholar
  20. 20.
    Kuszak, J., Rodin, M. (1977) A new technique of pinealectomy for adult rats. Experientia 33, 283–284.PubMedGoogle Scholar
  21. 21.
    Lord, G. M., Matarese, G., Howard, J. K., Baker, R. J., Bloom, S. R., Lechler, R. I. (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901.PubMedGoogle Scholar
  22. 22.
    Mangian, H. F., Lee, R. G., Paul, G. L., Emmert, J. L., Shay, N. F. (1998) Zinc deficiency suppresses plasma leptin concentrations in rats. J. Nutr. Biochem. 9, 47–51.Google Scholar
  23. 23.
    Mantzoros, C. S., Flier, J. S., Rogol, A. D. (1997) A longitudinal assessment of hormonal and physical alterations during normal puberty in boys: rising leptin levels may signal the onset of puberty. J. Clin. Endocrinol. Metab. 82, 1065–1070.Google Scholar
  24. 24.
    Mastronardi, C. A., Walczewska, A., Yu, W. H., Karanth, S., Parlow, A. F., McCann, S. M. (2000) The possible role of prolactin in the circadian rhythm of leptin secretion in male rats. Proc. Soc. Exp. Biol. Med. 224, 152–158.PubMedGoogle Scholar
  25. 25.
    Matkovic, V., Ilich, J. Z., Skugor, M., Badenhop, N. E., Goel, P., Clairmont, A., Klisovic, D., Nahhas, R. W., Landoll, J. D. (1997) Leptin is inversely related to age at menarche in human females. J. Clin. Endocrinol. Metab. 82, 3239–3245.PubMedGoogle Scholar
  26. 26.
    Meguid, M. M., Fetissov, S. O., Varma, M., Sato, T., Zhang, L., Laviano, A., Rossi-Fanelli, F. F. (2000) Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16, 843–857.PubMedGoogle Scholar
  27. 27.
    Mercer, J. G., Moar, K. M., Rayner, D. V., Trayhurn, P., Hoggard, N. (1997) Regulation of Leptin receptor and NPY gene expression in hypothalamus of Leptin-treated obese (ob/ob) and cold exposed lean mice. FEBS Letters 402, 185–188.PubMedGoogle Scholar
  28. 28.
    Mocchegiani, E., Bulian, D., Santarelli, L., Tibaldi, A., Muzzioli, M., Pierpaoli, W., Fabris, N. (1994) The immuno-reconstituting effect of melatonin or pineal grafting and its relation to zinc pool in aging mice. J. Neuroimmunol. 53, 189–201.PubMedGoogle Scholar
  29. 29.
    Mocchegiani, E., Bulian, D., Santarelli, L., Tibaldi, A., Muzzioli, M., Lesnikov, V., Pierpaoli, W., Fabris, N. (1996). The zinc pool is involved in the immune-reconstituting effect of melatonin in pinealectomized mice. J. Pharmacol. Exp. Ther. 277, 1200–1208.PubMedGoogle Scholar
  30. 30.
    Mocchegiani, E., Santarelli, L., Tibaldi, A., Muzzioli, M., Bulian, D., Cipriano, K., Olivieri, F., Fabris, N. (1998) Presence of links between zinc and melatonin during the circadian cycle in old mice: effects on thymic endocrine activity and on the survival. J. Neuroimmunol. 86, 111–122.PubMedGoogle Scholar
  31. 31.
    Mocchegiani, E., Perisin, L., Santarelli, L., Tibaldi, A., Zorzet, S., Rapozzi, V., Giacconi, R., Bulian, D., Giraldi, T. (1999) Melatonin administration in tumor-bearing mice (intact and pinealectomized) in relation to stress, zinc, thymulin and IL-2. Int. J. Immunopharmacol. 21, 27–46.PubMedGoogle Scholar
  32. 32.
    Mustonen, A. M., Nieminen, P., Hyvarinen, H. (2001) Preliminary evidence that pharmacologic melatonin treatment decreases rat ghrelin levels. Endocrine 16, 43–46.PubMedGoogle Scholar
  33. 33.
    Mustonen, A. M., Nieminen, P., Hyvarinen, H., Asikainen, J. (2001) Exogenous melatonin elevates the plasma leptin and thyroxine concentrations of the mink (Mustela vison). Z. Naturforsch. [C] 55, 806–813.Google Scholar
  34. 34.
    Olusi, S., Al-Awadhi, A., Agabeyaka, C., Abraham, M., George, S. (2003) Serum copper levels and not zinc are positively associated with serum leptin concentrations in the healthy adult population. Biol. Trace. Elem. Res. 91, 137–144.PubMedGoogle Scholar
  35. 35.
    Ott, E. S., Shay, N. F. (2001) Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes. Exp. Biol. Med. (Maywood) 226, 841–846.Google Scholar
  36. 36.
    Pelleymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Bone, T., Collins, F. (1995) Effects of the obese gene-product on body weight regulation in ob/ob mice. Science 269, 540–543.PubMedGoogle Scholar
  37. 37.
    Prasad, A. S. (1985) Clinical manifestations of zinc deficiency. Annu. Rev. Nutr. 5, 341–363.PubMedGoogle Scholar
  38. 38.
    Prunet-Marcassus, B., Desbazeille, M., Bros, A., Louche, K., Delagrange, P., Renard, P., Casteilla, L., Penicaud, L. (2003) Melatonin reduces body weight gain in Sprague-Dawley rats with diet-induced obesity. Endocrinology 144, 5347–5352.PubMedGoogle Scholar
  39. 39.
    Rasmussen, D. D., Boldt, B. M., Wilkinson, C. W., Yellon, S. M., Matsumoto, A. M. (1999) Daily melatonin administration at middle age suppresses male rat visceral fat, plasma leptin, and plasma insulin to youthful levels. Endocrinology 140, 1009–1012.PubMedGoogle Scholar
  40. 40.
    Rasmussen, D. D., Mitton, D. R., Larsen, S. A., Yellon, S. M. (2001) Aging-dependent changes in the effect of daily melatonin supplementation on rat metabolic and behavioral responses. J. Pineal. Res. 31, 89–94.PubMedGoogle Scholar
  41. 41.
    Reiter, R. J. (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49, 654–664.PubMedGoogle Scholar
  42. 42.
    Reiter, R. J., Tan, D., Kim, S. J., Manchester, L. C., Qi, W., Garcia, J. J., Cabrera, J. C., El-Sokkary, G., Rouvier-Garay, V. (1999) Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech. Ageing Dev. 110, 157–173.PubMedGoogle Scholar
  43. 43.
    Safai-Kutti, S., Kutti, J. (1986) Zinc supplementation in anorexia nervosa. Am. J. Clin. Nutr. 44, 581–582.PubMedGoogle Scholar
  44. 44.
    Selvais, P. L., Labuche, C., Nguyen, X. N., Ketelslegers, J. M., Denef, J. F., Maiter, D. M. (1997) Cyclic feeding behaviour and changes in hypothalamic galanin and neuropeptide Y gene expression induced by zinc deficiency in the rat. J. Neuroendocrinol. 9, 55–62.PubMedGoogle Scholar
  45. 45.
    Sierra-Honigmann, M. R., Nath, A. K., Murakami, C., Garcia-Cardena, G., Papapetropoulos, A., Sessa, W. C., Madge, L. A., Schechner, J. S., Schwabb, M. B., Polverini, P. J., Flores-Riveros, J. R. (1998) Biological action of leptin as an angiogenic factor. Science 281, 1683–1686.PubMedGoogle Scholar
  46. 46.
    Skwarlo-Sonta, K. (1996) Functional connections between the pineal gland and immune system. Acta Neurobiol. Exp. (Wars.) 56, 341–357.Google Scholar
  47. 47.
    Tallman, D. L., Taylor, C. G. (2003) Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J. Nutr. Biochem. 14, 17–23.PubMedGoogle Scholar
  48. 48.
    Trayhurn, P., Hoggard, N., Mercer, J. G., Rayner, D. V. (1999) Leptin: fundamentel aspects. Int. J. Obes. Relat. Metab. Disord. 23, 22–28.PubMedGoogle Scholar
  49. 49.
    Wada, L., King, J. C. (1986) Effect of low zinc intakes on basal metabolic rate, thyroid hormones and protein utilization in adult men. J. Nutr. 116, 1045–1053.PubMedGoogle Scholar
  50. 50.
    Wilkinson, M., Arendt, J., Bradtke, J., de Ziegler, D. (1997) Determination of a dark-induced increase of pineal N-acetyl transferase activity and simultaneous radioimmunoassay of melatonin in pineal, serum and pituitary tissue of the male rat. J. Endocrinol. 72, 243–244.Google Scholar
  51. 51.
    Wolden-Hanson, T., Mitton, D. R., McCants, R. L., Yellon, S. M., Wilkinson, C. W., Matsumoto, A. M., Rasmussen, D. D. (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141, 487–497.PubMedGoogle Scholar
  52. 52.
    Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J. M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physiology, Meram Medical SchoolSelcuk UniversityKonyaTurkey

Personalised recommendations