Acta Biologica Hungarica

, Volume 58, Issue 3, pp 269–279 | Cite as

Investigation of Lipid Peroxide and Glutathione Redox Status of Chicken Conserning on High Dietary Selenium Intake

  • K. BaloghEmail author
  • Mária Weber
  • Márta Erdélyi
  • M. Mézes


This study was designed to investigate the effects of excess (24.5 mg Se/kg feed) inorganic and organic dietary selenium supplementation on 3-week-old broilers. The experiments lasted 4 days. Intensity of lipid peroxidation processes (malondialdehyde, MDA) and the amount (reduced glutathione, GSH) and activity (glutathione peroxidase activity, GSHPx) of gluathione redox system were measured in blood plasma, red blood cell hemolysate and liver. Voluntary feed intake in the selenium-treated groups reduced remarkably. Elevated GSH concentration and GSHPx activity were measured in plasma and liver of both selenium-treated groups compared to the untreated control and the ‘pair-fed’ controls. The lipid peroxidation processes in the liver showed higher intensity than the control due to both selenium treatment. The applied dose of selenite and selenomethionine does not inhibit, but even improves the activity of glutathione redox system in the liver during the early period of selenium exposure.


Chicken sodium-selenite selenomethionine glutathione redox system lipid peroxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acamovic, T., Bertin, G., Surai, P., Brown, D. (2005) The effects of supra levels of selenium from sodium selenite and Sel-Plex in diets for growing broilers. Nutritional Biotechnology in the Feed and Food Industries. Proc. 21stAnn. Symp. (Suppl. 1). Lexington, p. 81.Google Scholar
  2. 2.
    Chen, J., Berry, M. J. (2003) Selenium and selenoproteins in the brain and brain diseases. J. Neurochem. 86, 1–12.CrossRefGoogle Scholar
  3. 3.
    Combs, G. F., Combs, S. B. (1984) The nutritional biochemistry of selenium. Annu. Rev. Nutr. 4, 257–280.CrossRefGoogle Scholar
  4. 4.
    Comporti, M. (1987) Glutathione depleting agents and lipid peroxidation. Chem. Phys. Lipids 45, 143–169.CrossRefGoogle Scholar
  5. 5.
    DeLeve, L. D., Kaplowitz, N. (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol. Ther. 52, 287–305.CrossRefGoogle Scholar
  6. 6.
    Erdélyi, M., Mézes, M., Virág, Gy. (1999) Selenium-dependent glutathione peroxidase enzymes in the animals. I. Structure, function and regulation (In Hungarian). Biokémia 23, 82–88.Google Scholar
  7. 7.
    Gowdy, K. M., Edens, F. W. (2005) Organoselenium in yeast (Sel-Plex) does not produce overt signs of toxicity in young broiler chickens. Nutritional Biotechnology in the Feed and Food Industries. Proc. 21stAnn. Symp. (Suppl. 1.) Lexington, p. 81.Google Scholar
  8. 8.
    Hoffman, D. J., Heinz, G. H., Krynitsky, A. J. (1989) Hepatic glutathione metabolism and lipid per-oxidation response to excess dietary selenomethionine and selenite in mallard ducklings. J. Toxicol. Environm. Health 27, 263–271.CrossRefGoogle Scholar
  9. 9.
    LeBoeuf, R. A., Zentr, K. L., Hoekstra, W. G. (1985) Effects of dietary selenium concentration and duration of selenium feeding on hepatic glutathione concentrations in rats. Proc. Soc. Exp. Biol. Med. 180, 348–352.CrossRefGoogle Scholar
  10. 10.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  11. 11.
    Matkovics, B., Szabó, L., Sz. Varga, I. (1988) Determination of lipid peroxidation and the activity of glutathione metabolism enzymes in biological samples. (In Hungarian) Lab. Diagn. 15, 248–250.Google Scholar
  12. 12.
    Meister, A. (1992) On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44, 1905–1915.CrossRefGoogle Scholar
  13. 13.
    Mézes, M., Matkovics, B. (1986) The molecular mechanism of lipid peroxidation and its measurement. In: Csaba, Gy. (ed.) Actual Problems of Biology. Vol. 34. (In Hungarian) Medicina, Budapest, pp. 61–104.Google Scholar
  14. 14.
    Mézes, M., Oppel, K. (1995) The glutathione depleting effect of feed deprivation in the blood plasma and liver of domestic fowl. Bull. Univ. Agric. Sci. Gödöllő 1993-1994. pp. 63–68.Google Scholar
  15. 15.
    Mihara, M., Uchiyama, M., Fukuzawa, K. (1980) Thiobarbituric acid value of fresh homogenate of rat as parameter of lipid peroxidation in ageing, CCl4 intoxication and vitamin E deficiency. Biochem. Med. 23, 302–311.CrossRefGoogle Scholar
  16. 16.
    Nebbia, C., Gremmels, J. F., Soffietti, M. G. (1990) Pathogenesis of sodium selenite and dimethylse-lenide acute toxicosis in swine: tissue and blood biochemical changes. Res. Comm. Chem. Pathol. Pharmacol. 67, 117–130.Google Scholar
  17. 17.
    Neve, J. (1991) Physiological and nutritional importance of selenium. Experientia 47, 187–193.CrossRefGoogle Scholar
  18. 18.
    Ohlendorf, H. M., Hoffman, D. J., Saiki, M. K., Aldrich, T. W. (1986) Embryonic mortality and abnormalities of aquatic birds. Apparent impacts of selenium from irrigation drainwater. Sci. Total Environ. 52, 49–63.CrossRefGoogle Scholar
  19. 19.
    Oster, O., Schmiedel, G., Prellwitz, W. (1988) The organ distribution of selenium in German adults. Biol. Trace Elem. Res. 15, 23–45.CrossRefGoogle Scholar
  20. 20.
    Placer, Z. A., Cushman, L. L., Johnson, B. C. (1966) Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal. Biochem. 16, 359–364.CrossRefGoogle Scholar
  21. 21.
    Sedlak, I., Lindsay, R. H. (1968) Estimation of total, protein-bound and non-protein sulfhydryl groups in tissues with Ellmann’s reagent. Anal. Biochem. 25, 192–205.CrossRefGoogle Scholar
  22. 22.
    Seko, Y., Saito, Y., Kitahara, J., Imura, N. (1989) Active oxygen generation by the reaction of selen-ite with reduced glutathione in vitro. In: Wendel, A. (ed.) Selenium in Biology and Medicine. Springer, Berlin. pp. 70–73.CrossRefGoogle Scholar
  23. 23.
    Spallholz, J. E., Hoffman, D. J. (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat. Toxicol. 57, 27–37.CrossRefGoogle Scholar
  24. 24.
    Stadtman, T. C. (1996) Selenocysteine. Annu. Rev. Biochem. 65, 83–100.CrossRefGoogle Scholar
  25. 25.
    Terada, A., Yoshida, M., Seko, Y., Kobayashi, T., Yoshida, K., Nakada, M., Nakada, K., Echizen, H., Ogata, H., Rikihisa, T. (1999) Active oxygen species generation and cellular damage by additives of parenteral preparations: selenium and sulfhydryl compounds. Nutrition 15, 651–655.CrossRefGoogle Scholar
  26. 26.
    Troncoso, P., Smok, G., Videla, L. A. (1997) Potentiation of ischemia-reperfusion liver injury by hiperthyroidism in the rat. Free Rad. Biol. Med. 23, 19–25.CrossRefGoogle Scholar
  27. 27.
    Weichselbaum, T. E. (1948) An accurate and rapid method for the determination of protein in small amounts of serum and plasma. Am. J. Clin. Pathol. 16, 40–43.CrossRefGoogle Scholar
  28. 28.
    Whanger, P. D. (2002) Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr. 21, 223–232.CrossRefGoogle Scholar
  29. 29.
    Yan, L., Spallholz, J. E. (1993) Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells. Biochem. Pharmacol. 45, 429–437.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • K. Balogh
    • 1
    Email author
  • Mária Weber
    • 1
  • Márta Erdélyi
    • 1
  • M. Mézes
    • 1
  1. 1.Department of Nutrition, Faculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary

Personalised recommendations