Acta Biologica Hungarica

, Volume 58, Issue 2, pp 209–218 | Cite as

Copper-Induced Oxidative Stress in Maize Shoots (Zea Mays L.): H2O2 Accumulation and Peroxidases Modulation

  • Houda Bouazizi
  • H. Jouili
  • E. El FerjaniEmail author


The effect of copper excess on growth, H2O2 level and peroxidase activities were studied in maize shoots. Ten-day-old seedlings were cultured in nutrient solution that contained Cu2+ ions at various concentrations (50 and 100 μM) for seven days. High concentrations of Cu2+ ions caused significant decrease both in matter production and elongation of maize shoots. In addition, treatment with CuSO4 increased levels of H2O2 and induced changes in several peroxidase activities. Moreover, the disturbance of the physiological parameters was accompanied by the modulation of the peroxidase activities: GPX (Guaiacol peroxidase, EC, CAPX (Coniferyl alcohol peroxidase, EC and APX (Ascorbate peroxidase, EC. Furthermore, this modulation becomes highly significant, especially, in the presence of 100 μM of CuSO4.


Peroxidases copper H2O2 Zea mays L. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alloway, B. J. (1995) Heavy Metals in Soils. Second Edition, Blackie Academic and Professional, London.CrossRefGoogle Scholar
  2. 2.
    Alvarez, M. E., Penel, R. I., Meijer, P. J., Ishikaw, A., Dixon, R. A., Lamb, C. (1998) Reactive oxygen intermediate a systemic signal network in the establishment of plant immunity. Cell 92, 773–784.CrossRefGoogle Scholar
  3. 3.
    Baccouche, S., Chaoui, A., El Ferjani, E. (1998) Nickel induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol. Biochem. 36, 6896–6898.Google Scholar
  4. 4.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principale of protein-dye binding. Anal. Biochem. 72, 248–258.CrossRefGoogle Scholar
  5. 5.
    Chen, E. L., Chen, Y. A., Chen, L. M., Liu, Z. H. (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol. Biochem. 40, 439–444.CrossRefGoogle Scholar
  6. 6.
    Cuypers, A., Vangronsveld, J., Clijsters, H. (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during early stages of metal assimilation. Physiol. Plant. 110, 512–517.CrossRefGoogle Scholar
  7. 7.
    Elstner, E. F., Wagner, G. A., Schütz, W. (1988) Activated oxygen in green plants in relation to stress situations. Curr. Topics Plant Biochem. 36, 873–877.Google Scholar
  8. 8.
    Fielding, J. L., Hall, J. L. (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. J. Exp. Bot. 29, 979–986.Google Scholar
  9. 9.
    Gabbrielli, R. M., Pandolfini, T. M., Vergano, O., Palandri, M. R. (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122, 271–277.CrossRefGoogle Scholar
  10. 10.
    Gupta, M., Cuypers, A., Vangronsveld, J., Clijsters, H. (1999) Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in roots of Phaseolus vulgaris. Physiol Plant. 106, 262–267.CrossRefGoogle Scholar
  11. 11.
    Halliwell, B., Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14.CrossRefGoogle Scholar
  12. 12.
    Jouili, H., El Ferjani, E. (2003) Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. C. R. Biologies 326, 639–644.CrossRefGoogle Scholar
  13. 13.
    Jouili, H., El Ferjani, E. (2004) Effect of copper excess on superoxide dismutase, catalase, and per-oxidase activities in sunflower seedlings (Helianthus annuus L.). Acta physiologiae Plantarum 26, 29–35.CrossRefGoogle Scholar
  14. 14.
    Lin, C. C., Chen, L. M., Liu, Z. H. (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci. 168, 858–861.Google Scholar
  15. 15.
    Mazhoudi, S., Chaoui, A., Gorbal, M. H., El Ferjani, E. (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersion esculentum, Mill.). Plant Sci. 127, 182–186.CrossRefGoogle Scholar
  16. 16.
    Mocquot, B., Vangronseveld, J., Clijsters, H., Mench, M. (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents and enzyme activities. Plant and Soil 182, 287–300.CrossRefGoogle Scholar
  17. 17.
    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22, 423–430.Google Scholar
  18. 18.
    Pandolfini, T., Gabbrielli, R., Comparini, C. (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ. 15, 719–725.CrossRefGoogle Scholar
  19. 19.
    Pedereńo, M. A., Barcelo, A. R., Sabatter, F., Munoz, R. (1989) Control by pH of cell wall peroxi-dase activity involved in lignification. Plant Cell Physiol. 30, 237–241.CrossRefGoogle Scholar
  20. 20.
    Quiroga, M., Guerrero, C., Botella, M. A., Barceló, Amaya, I., Medina, M. I., Alonso, F. J., Forchetti, S. M., Tigier, H., Valpuesta, V. (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122, 1119–1127.CrossRefGoogle Scholar
  21. 21.
    Sandmann, G., Böger, P. (1980) Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol. 66, 797–800.CrossRefGoogle Scholar
  22. 22.
    Sanita Di Troppi, L., Gabbrielli, R. (1999) Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105–130.CrossRefGoogle Scholar
  23. 23.
    Scarponil, L., Perucci, P. (1984) Effects of some metals and related metal organic compounds on ALA-deshydratase activity of corn. Plant and Soil 79, 69–75.CrossRefGoogle Scholar
  24. 24.
    Schützendübel, A., Nikolova, I. P., Rudolf, C., Polle, A. (2002) Cadmium and H2O2-induced oxidative stress in Populus×canescens roots. Plant Physiol. Biochem. 40, 577–584.CrossRefGoogle Scholar
  25. 25.
    Sergiev, I., Alexieva, V., Karanov, E. (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comt. Rend. Acad. Bulg. Sci. 51, 121–124.Google Scholar
  26. 26.
    Sgherri, C., Milone, M. T. A., Clijsters, H., Navari-Izzo, F. (2001) Antioxidative enzymes in two wheat cultivars, differently sensitive to drought and subjected to subsymptomatic copper doses. J. Plant Physiol. 158, 1439–1447.CrossRefGoogle Scholar
  27. 27.
    Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y. R., Kazuya, Y. (2002) Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53, 1305–1319.CrossRefGoogle Scholar
  28. 28.
    Van Assche, F., Clijsters, H. (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ. 13, 195–206.CrossRefGoogle Scholar
  29. 29.
    Velikova, V., Yordanov, I., Edreva, Q. (2000) Oxidative and some antioxidant systems in acid rain-treated bean plants. Protection role of exogenous polyamines. Plant Science 151, 59–66.CrossRefGoogle Scholar
  30. 30.
    Wainwright, S. J., Woolhouse, H. W. (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenius sibth: cell elongation and membrane damage. J. Exp. Bot. 281, 1029–1036.CrossRefGoogle Scholar
  31. 31.
    Yruela, I. (2005) Copper in plants. Braz. J. Plant Physiol. 171, 145–156.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Laboratoire de Bio-Physiologie CellulairesFaculté des Sciences de BizerteZarzounaTunisia

Personalised recommendations