Advertisement

Acta Biologica Hungarica

, Volume 58, Issue 2, pp 187–198 | Cite as

Acetylsalicylic Acid Decreases the Labeling of Blood Constituents with Technetium-99m

  • A. S. FonsecaEmail author
  • J. N. G. Frydman
  • Vanessa C. Rocha
  • M. Bernardo-Filho
Article

Abstract

Acetylsalicylic acid is the most widely used drug as antipyretic, analgesic, anti-inflammatory agent and for secondary prevention of thrombotic phenomena in the heart, brain and peripheral circulation. Drugs can modify the labeling of blood constituents with technetium-99m (99mTc). This work has evaluated the effect of in vivo treatment with acetylsalicylic acid on the in vitro labeling of the blood constituents with 99mTc. Wistar rats were treated with different doses (1.5, 3.0 and 6.0 mg/kg) of acetylsalicylic acid during 1 hour. At higher dose used (6.0 mg/kg) animals were treated during different period of time (0.25, 1.0 and 4.0 hours). Animals treated with physiologic saline solution were used as control. After the labeled process; plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated. Afterwards, the percentage of radioactivity (%ATI) in each fraction was calculated. The treatment during 1 hour with acetylsalicylic acid at higher dose has significantly (p < 0.05) modified the fixation of 99mTc on blood cells. Considering the results, we suggest that acetylsalicylic acid used at therapeutic doses may interfere with the nuclear medicine procedures related to these blood constituents.

Keywords

Acetylsalicylic acid blood constituents technetium-99m 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abreu, P. R., Almeida, M. C., Bernardo, R. M., Bernardo, L. C., Brito, L. C., Garcia, E. A., Fonseca, A. S., Bernardo-Filho, M. (2006) Guava extract (Psidium guajava) alters the labelling of blood constituents with technetium-99m. J. Zhejiang Univ. Sci. B 7, 429–435.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Antithrombotic Trialists’Collaboration, meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. (2002) Br. Med. J. 324, 71–86.Google Scholar
  3. 3.
    Aude, Y. W., Mehta, J. L. (2002) Nonplatelet-mediated effects of aspirin. Drugs Today (Barc) 38, 501–507.Google Scholar
  4. 4.
    Baker, W. J., Datz, F. L. (1987) Preparation and clinical utility of labeled blood products. In: Saha, G. B. (ed.) Essentials of Nuclear Medicine Sciences. Williams and Wilkins, Sydney, pp. 90–98.Google Scholar
  5. 5.
    Bernardo-Filho, M., Gutfilen, B., Maciel, O. S. (1994) Technetium-99m binding on plasma proteins and red blood cells: role of various precipitating agents. Biomed. Lett. 50, 17–24.Google Scholar
  6. 6.
    Bernardo-Filho, M., Moura, I. N. S., Boasquevisque, E. M. (1983) 99mTechnetium-labeled red blood cells “in vitro”. Arch. Biol. Technol. 26, 455–461.Google Scholar
  7. 7.
    Bridges, K. R., Schmidt, G. J., Jensen, M., Gerami, A., Bunn, H. F. (1975) The acetylation of hemoglobin by aspirin in vitro and in vivo. J. Clin. Invest. 56, 201–207.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Callahan, R. J., Rabito, C. A. (1990) Radiolabeling of erythrocytes with technetium-99m: role of band-3 protein in the transport of pertechnetate across the cell membrane. J. Nucl. Med. 31, 2004–2010.PubMedGoogle Scholar
  9. 9.
    Catella-Lawson, F. (2001) Vascular biology of thrombosis: platelet-vessel wall interactions and aspirin effects. Neurology 57 (supp 2), 5-7.Google Scholar
  10. 10.
    Chiamvimonvat, V., Goodman, S. G., Langer, A., Barr, A., Freeman, M. R. (2001) Prognostic value of dipyridamole SPECT imaging in low-risk patients after myocardial infarction. J. Nucl. Cardiol. 8, 136–143.PubMedGoogle Scholar
  11. 11.
    Christioan, T. F., Milavetz, J. J., Miller, T. D., Clements, I. P., Holmes, D. R. Gibbons, R. J. (1998) Prevalence of spontaneous reperfusion and associated myocardial salvage in patients with acute myocardial infarction. Am. Heart J. 135, 421–427.Google Scholar
  12. 12.
    Claria, J., Serhan, C. N. (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. USA 92, 9475–9479.PubMedGoogle Scholar
  13. 13.
    Cortes, J., Alonso, J. I., Ruiz-Oliva, F., Alvarez, S., Ormijana, J. S., Caton, B., Alcorta, P. (2003) Renal cell carcinoma detected on Tc-99m-labeled red blood cell imaging. Clin. Nucl. Med. 28, 920–922.PubMedGoogle Scholar
  14. 14.
    Cronstein, B. N., Van de Stouwe, M., Druska, L., Levin, R. I., Weissmann, G. (1994) Nonsteroidal antiinflammatory agents inhibit stimulated neutrophil adhesion to endothelium: adenosine dependent and independent mechanisms. Inflammation 18, 323–335.PubMedGoogle Scholar
  15. 15.
    Dewanjee, M. K., Rao, S. A., Penniston, J. T. (1982) Mechanism of red blood cell labeling with 99mTechnetium-pertecnetate and the role of cation pumps at RBC membrane on distribution and binding of Sn+2 and 99mTechnetium with membrane proteins and hemoglobin. J. Labelled Compd. Radiopharm. 11, 1464–1466.Google Scholar
  16. 16.
    Durak, I., Karaayvaz, M., Cimen, M. Y., Avci, A., Cimen, O. B., Buyukkocak, S., Ozturk, H. S., Ozbek, H., Kacmaz, M. (2001) Aspirin impairs antioxidant system and causes peroxidation in human erythrocytes and guinea pig myocardial tissue. Hum. Exp. Toxicol. 20, 34–37.PubMedGoogle Scholar
  17. 17.
    Eggo, M. C., Bachrach, L. K., Mak, W., Burrow, G. N. (1986) Disparate uptake of 99mTcO 4- and 125I- in thyroid cells in culture. Horm. Metab. Res. 18, 167–172.PubMedGoogle Scholar
  18. 18.
    Etminan, M., Gill, S., Samii, A. (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 327(7407), 128.Google Scholar
  19. 19.
    Fonseca, A. S., Frydman, J. N. G., Santos, R., Bernardo-Filho, M. (2005) Influence of antipyretic drugs on the labeling of blood elements with technetium-99m. Acta Biol. Hung. 56, 275–282.PubMedGoogle Scholar
  20. 20.
    Frydman, J. N. G., Oliveira, M. B. N., Santos, A. E. O., Fonseca, A. S., Santos, R., Bernardo-Filho, M. (2004) Influence of methylxanthines on the labeling of blood elements with 99mTechnetium. Pak. J. Biol. Sci. 4, 521–524.Google Scholar
  21. 21.
    Greffrath, W., Kirschstein, T., Nawrath, H., Treede, R. D. (2002) Acetylsalicylic acid reduces heat responses in rat nociceptive primary sensory neurons - evidence for a new mechanism of action. Neurosci. Lett. 320, 61–64.PubMedGoogle Scholar
  22. 22.
    Guerrero, A., González-Correa, J. A., Arrebola, M. M., Muñoz-Marín, J., Sánchez de La Cuesta, F., De La Cruz, J. P. (2004) Antioxidant effects of a single dose of acetylsalicylic acidand salicylic acid in rat brain slices subjected to oxygen-glucose deprivation in relation with its antiplatelet effect. Neurosci. Lett. 328, 153–156.Google Scholar
  23. 23.
    Gutfilen, B., Boasquevisque, E. M., Bernardo-Filho, M. (1992) Calcium channel blockers: interference on red blood cells and plasma proteins labeling with 99mTc. Rev. Esp. Med. Nucl. 11, 195–199.Google Scholar
  24. 24.
    Harel, F., Dupuis, J., Benelfassi, A., Ruel, N., Gregoire, J. (2005) Radionuclide plethysmography for non-invasive evaluation of peripheral arterial blood flow. Am. J. Physiol. Heart Circ. Physiol. 289, 258–262.Google Scholar
  25. 25.
    Insel, P. A. (2001) Analgesic-antipyretic and antiinflammatory agents and drugs employed in the treatment of gout. In: Hardman, J. G., Limbird, L. E., Gilman, A. G. (eds) The Pharmacological Basis of Therapeutics. 10th McGraw-Hill, New York, pp. 617–657.Google Scholar
  26. 26.
    Javor, T., Tarnok, F., Past, T., Nagy, S. (1986) Cytoprotective effect of free radical scavengers against mucosal damage produced by different antirheumatic drugs. Int. J. Tissue React. 8, 35–40.PubMedGoogle Scholar
  27. 27.
    Jesus, L. M., Abreu, P. R. C., Almeida, M. C., Brito, L. C., Soares, F. S., Souza, D. E., Bernardo, L. C., Fonseca, A. S., Bernardo-Filho, M. (2006) A propolis extract and the labeling of blood constituents with technetium-99m. Acta Biol. Hung. 57, 191–200.PubMedGoogle Scholar
  28. 28.
    Kao, C. H., Chen, Y. C., Hsieh, K. S., Wang, S. J., Yeh, S. H. (1994) Equilibrium multigated blood pool ventriculography to evaluate the effects of high-dose gamma-globulin treatment for left ventricular functions in Kawasaki disease. Clin. Nucl. Med. 19, 723–726.PubMedGoogle Scholar
  29. 29.
    Langman, M. J. (1994) Adverse effects of conventional non-steroidal anti-inflammatory drugs on the upper gastrointestinal tract. Fundam. Clin. Pharmacol. 17, 393–403.Google Scholar
  30. 30.
    Moore, G. J. (1985) Kinetics of acetylation-deacetylation of angiotensin II. Int. J. Peptide Protein Res. 26, 469–481.Google Scholar
  31. 31.
    Nuyts, G. D., Elseviers, M. M., De Broe, M. E. (1989) Health impact of renal disease due to nephro-toxicity. Toxicol. Lett. 46, 31–44.PubMedGoogle Scholar
  32. 32.
    Olds, G. D., Cooper, G. S., Chak, A., Sivak, M. V. Jr., Chitale, A. A., Wong, R. C. (2005) The yield of bleeding scans in acute lower gastrointestinal hemorrhage. J. Clin. Gastroenterol. 39, 273–277.PubMedGoogle Scholar
  33. 33.
    Pillinger, M. H., Capodici, C., Rosenthal, P., Kheterpal, N., Hanft, S., Philips, M. R., Weissmann, G. (1998) Modes of action of aspirin-like drugs: salicylates inhibit erk activation and integrin-dependent neutrophil adhesion. Proc. Natl. Acad. Sci. USA 95, 14540–14545.PubMedGoogle Scholar
  34. 34.
    Scheiman, J. M., Elta, G. H. (1990) Gastroduodenal mucosal damage with salsalate versus aspirin: results of experimental models and endoscopic studies in humans. Semin. Arthritis Rheum. 20, 121–127.PubMedGoogle Scholar
  35. 35.
    Schwenger, P., Bellosta, P., Vietor, I., Basilico, C., Skolnik, E. Y., Vilcek, J. (1997) Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal kinase/stress-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 94, 2869–2873.PubMedGoogle Scholar
  36. 36.
    Shamsuddin, M., Mason, R. G., Ritchey, J. M., Honig, G. R., Klotz, I. M. (1974) Sites of acetylation of sickle cell hemoglobin by aspirin. Proc. Natl. Acad. Sci. USA 71, 4693–4697.PubMedGoogle Scholar
  37. 37.
    Slart, R. H., Phan, T. T., Talsma, M. D., Jager, P. L. (2004) Different splenic uptake of Tc-99m sulfur colloid and Tc-99m heat-denatured red blood cells in an infant with complete situs inversus. Clin. Nucl. Med. 29, 590–591.PubMedGoogle Scholar
  38. 38.
    Steer, K. A., Wallace, T. M., Bolton, C. H., Hartog, M. (1997) Aspirin protects low density lipopro-tein from oxidative modification. Heart 77, 333–337.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Tokumaru, S., Yoshikai, T., Uchino, A., Matsui, M., Kuroda, Y., Kudo, S. (2001) Technetium-99m-ECD SPECT in antiphospholipid antibody syndrome: a drastic improvement in brain perfusion by antiplatelet therapy. Eur. Radiol. 11, 2611–2615.PubMedGoogle Scholar
  40. 40.
    Verdu, J., Martinez, A., Anton, M. A., Munoz, J. M., Riera, M., Jover, R., Caballero, O. (2005) Increased thallium-201 uptake and Tc-99m red blood cell accumulation in hemangioma. Clin. Nucl. Med. 30, 25–26.PubMedGoogle Scholar
  41. 41.
    Weissmann, G. (1992) NSAIDs: aspirin and aspirin-like drugs. In: Wyngaarden, J. B., Smith, L. H. Jr., Benneth, J. C. (eds) Cecil Textbook of Medicine. 19th Edition. Saunders, Philadelphia, p. 114.Google Scholar
  42. 42.
    Welling, M. M., Mongera, S., Lupetti, A., Balter, H. S., Bonetto, V., Mazzi, U., Pauwels, E. K., Nibbering, P. H. (2002) Radiochemical and biological characteristics of 99mTc-UBI 29-41 for imaging of bacterial infections. Nucl. Med. Biol. 29, 413–422.PubMedGoogle Scholar
  43. 43.
    Wu, R., Lamontagne, D., de Champlin, J. (2002) Antioxidative properties of acetylsalicylic acidon vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 105, 387–392.PubMedGoogle Scholar
  44. 44.
    Xu, A. S., Macdonald, J. M., Labotka, R. J., London, R. E. (1999) NMR study of the sites of human hemoglobin acetylated by aspirin. Biochim. Biophys. Acta. 1432, 333–349.PubMedGoogle Scholar
  45. 45.
    Yin, M. J., Yamamoto, Y., Gaynor, R. B. (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77–80.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. S. Fonseca
    • 1
    Email author
  • J. N. G. Frydman
    • 2
  • Vanessa C. Rocha
    • 2
  • M. Bernardo-Filho
    • 2
  1. 1.Departamento de Farmacologia e Psicobiologia eUniversidade do Estado do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations