Advertisement

Acta Biologica Hungarica

, Volume 58, Issue 2, pp 163–172 | Cite as

Expression Analysis of Genes Putatively Involved in Chicken Gonadal Development

  • Y. Feng
  • S. Zhang
  • X. Peng
  • J. Yuan
  • Y. Yang
  • H. Zhan
  • Y. GongEmail author
Open Access
Article

Abstract

In mammals, testis development is initiated by the expression of the sex-determining gene, SRY, whereas the genetic trigger for sex determination in birds remains unknown. In the present study, the expression of seven genes implicated in vertebrate sex determination and differentiation were studied in chicken embryonic gonads from day 4 to day 12 of incubation using reverse transcription and the polymerase chain reaction (RT-PCR). Results showed transcription of cLhx9, cGATA4, cVnn1, cPpt1, cBrd3 were sexually dimorphic during chicken gonadal development, whereas cEki2, cFog2 were expressed at similar levels in both sexes. Results of comparative studies between mammals and chickens show that vertebrate sex-determining pathways comprise both conserved and divergent elements: expression profiles of cGATA4/cFog2 and cVnn1 are similar to those in mammals, while others appear some differences. Possible functions of these genes on chicken gonadal development were analyzed based on their expression profiles.

Keywords

Gonadal development sex determination sex differentiation RT-PCR chicken 

Notes

Acknowledgements

This work was supported by Hubei Project grant to the outstanding youth, Project of National Natural Science Foundation (30671494) and the 11th “Five-year Project” to tackling the Key Problems in Hubei province. Special appreciation goes to Professor David Gerrard, Department of Animal Science, Purdue University for his grammatically proofreading. And we thank Dr. Shen Shixue and Dr. Khairy M. Zoheir for critically reading and revising an earlier version of this manuscript.

References

  1. 1.
    Albrecht, K. H., Eicher, E. M. (2001) Evidence that Sry is expressed in pre-Sertoli and granulose cells have a common precursor. Dev. Biol. 240, 92–107.CrossRefGoogle Scholar
  2. 2.
    Birk, O. S., Casiano, D. E., Wassif, C. A., Cogliati, T., Zhao, L. P., Zhao, Y. G., Grinberg, A., Huang, S. P., Kreidberg, J. A., Parker, K. L., Porter, F. D., Westphal, H. (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909–913.CrossRefGoogle Scholar
  3. 3.
    Bowles, J., Bullejos, M., Koopman, P. (2000) A subtractive gene expression screen suggests a role for vanin-1 in testis development in mice. Genesis 27, 124–135.CrossRefGoogle Scholar
  4. 4.
    Boyer, A., Lussier, J. G., Sinclair, A. H., McClive, P. J., Silversides, D. W. (2004) Pre-Sertoli specific gene expression profiling reveals differential expression of Ppt1 and Brd3 genes within the mouse genital ridge at the time of sex determination. BOR Papers in Press 71, 820–827.Google Scholar
  5. 5.
    Feng, Y., Zhang, Sh., Peng, X., Gong, Y. (2003) Identification of the sex of chicken by duplex PCR. The current Development of Poultry science, Proceeding of 11th National Symposium on poultry science, pp. 47-49. (in Chinese)Google Scholar
  6. 6.
    Graves, J. A. M., Shetty, S. (2001) Sex from W to Z: Evolution of vertebrate sex chromosome and sex determining genes. J. Exp. Zool. 290, 449–462.CrossRefGoogle Scholar
  7. 7.
    Hamburger, V., Hamilton, H. L. (1951) A series of normal stages in the development of the chicken embryo. J. Morphol. 88, 49–92.CrossRefGoogle Scholar
  8. 8.
    Hurley, T. M., McClive, P. J., Sarraj, M. A., Sinclair, A. H. (2004) Eki2 is upregulated specifically in the testis during mouse sex determination. Gene Exp. Patterns 4, 135–140.CrossRefGoogle Scholar
  9. 9.
    Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. N., Lovell-Badge, R. (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121.CrossRefGoogle Scholar
  10. 10.
    Mizuno, S., Kunita, R., Nakabayashi, O., Kuroda, Y., Arai, N., Harata, M., Ogawa, A., Itoh, Y., Teranishi, M., Hori, T. (2002) Z and W chromosomes of chickens: studies on their gene functions in sex determination and sex differentiation. Cytogenet Genome Res. 99, 236–244.CrossRefGoogle Scholar
  11. 11.
    Mazaud, S., Oreal, E., Guigon, C. J., Carre-Eusebe, D., Magre, S. (2002) Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation. Gene Exp. Patterns 2, 373–377.CrossRefGoogle Scholar
  12. 12.
    Morrish, B. C., Sinclair, A. H. (2002) Vertebrate sex determination: many means to an end. Reproduction 124, 447–457.CrossRefGoogle Scholar
  13. 13.
    O’Neill, M., Binder, M., Smith, C. A., Andrews, J., Reed, K., Smith, M. J., Millar, C., Lambert, D., Sinclair, A. H. (2000) ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev. Gen. Evol. 210, 243–249.CrossRefGoogle Scholar
  14. 14.
    Oreal, E., Pieu, C., Matiei, M. G., Josso, N., Picard, J. Y., Eusebe, D. C., Magre, S. (1998) Early expression of AMH in chicken embryonic gonads precedes teaticular SOX9 expression. Dev. Dynam. 212, 522–532.CrossRefGoogle Scholar
  15. 15.
    Parker, K. L., Schinner, B. P. (2002) Genes essential for early events in gonadal development. Ann. Med. 34, 171–178.CrossRefGoogle Scholar
  16. 16.
    Pieau, C. (1996) Temperature variation and sex determination in reptiles. BioEssays 18, 19–26CrossRefGoogle Scholar
  17. 17.
    Pivot-Pajot, C., Caron, C., Govin, J., Vion, A., Rousseaux, S., Khochbin, S. (2003) Acetylation - dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol. Cell Biol. 23, 5354–5365.CrossRefGoogle Scholar
  18. 18.
    Raymond, C. S., Kettlewell, J. R., Hirsch, B., Bardwell, V. J., Zarkower, D. (1999) Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexually development. Dev. Bio. 215, 208–220.CrossRefGoogle Scholar
  19. 19.
    Reed, K. J., Sinclair, A. H. (2003) FET-1: a novel W-linked, female specific gene upregulated in the embryonic chicken ovary. Gene Exp. Patterns 2, 83–85.CrossRefGoogle Scholar
  20. 20.
    Rhee, K., Brunori, M., Besset, V., Trousdale, R., Wolgemuth, D. J. (1998) Expression and potential role of Fsrg1, a murine bromodomain-containing homologue of the Drosophila gene female sterile homeotic. J. Cell Sci. 111, 3541–3550.PubMedGoogle Scholar
  21. 21.
    Shan, Z., Nanda, I., Wang, Y., Schmid, M., Vortkamp, A., Haaf, T. (2000) Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds. Cytogenet. Cell Genet. 89, 252–257.CrossRefGoogle Scholar
  22. 22.
    Shimada, K. (2002) Sex determination and sex differentiation. Avian Poult. Biol. Rev. 13, 1–14.CrossRefGoogle Scholar
  23. 23.
    Sinclair, A. H., Berta, P., Hawkins, M. S., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R., Goodfellow, P. N. (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA binding motif. Nature 346, 240–244.CrossRefGoogle Scholar
  24. 24.
    Smith, C. A., Clifford, V., Westerm, P. S., Wilcox, S. A., Bell, K. S., Sinclair, A. H. (2000) Cloning and expression of a DAX1 homologue in the chicken embryo. J. Mol. Endocrinol. 24, 23–32.CrossRefGoogle Scholar
  25. 25.
    Smith, C. A., Sinclair, A. H. (2004) Sex determination: insights from the chicken. BioEssays 26, 120–132.CrossRefGoogle Scholar
  26. 26.
    Smith, C. A., Smith, M. J., Sinclair, A. H. (1999) Gene expression during gonadogenesis in the chicken embryo. Gene 234, 395–402.CrossRefGoogle Scholar
  27. 27.
    Tevosian, S. G., Albrecht, K. H., Crispino, J. D., Fujiwara, Y., Eicher, E. M., Orkin, S. H. (2002) Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129, 4627–4634.PubMedGoogle Scholar
  28. 28.
    Viger, R. S., Mertineit, C., Trasler, J. M., Nemer, M. (1998) Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Müllerian inhibiting substance promoter. Development 125, 2665–2675.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Y. Feng
    • 1
  • S. Zhang
    • 1
  • X. Peng
    • 1
  • J. Yuan
    • 1
  • Y. Yang
    • 1
  • H. Zhan
    • 1
  • Y. Gong
    • 1
    Email author
  1. 1.Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of EducationHuazhong Agricultural UniversityWuhanP. R. China

Personalised recommendations