Advertisement

Acta Biologica Hungarica

, Volume 58, Issue 2, pp 139–150 | Cite as

Multiple Signaling Pathways Involved in the Effect of Endothelin Type B Receptor in Rat Median Eminence

  • Yaira Mathison
  • María Rosario del Garrido
  • Anita IsraelEmail author
Article

Abstract

We assessed the possible link between endothelin receptor mediated phosphoinositide breakdown and NO/cGMP signaling pathways in rat arcuate nucleus-median eminence fragments (AN-ME), brain structures known to contain a rich plexus of nitric oxide synthase (NOS)-containing neurons and fibers, together with densely arranged endothelin ETB-receptors-like immunoreactive fibres. Our data show that ET-1, ET-3 and the ETB-receptors agonist, IRL 1620, increased inositol monophosphate (InsP1) accumulation, NOS activity and cGMP formation, in a similar degree. The stimulatory effect of ETs on InsP1 accumulation and cGMP formation was inhibited by the phospholipase C (PLC) inhibitor, neomycin, and the absence of extracellular calcium, suggesting that calcium is involved in endothelin receptor-induced PLC activation. The L-arginine analog, L-NAME, inhibited ET-1 or IRL1620-stimulated cGMP formation. The ETA receptor antagonists BQ 123, did not alter, while the ETB receptor antagonists BQ788 inhibited ETs-induced increase in the PI metabolism, NOS activity and cGMP generation. Our data indicate that in AN-ME, ETB receptor signals through receptor-mediated calcium dependent-stimulation of phosphoinositide breakdown and activation of NOS/cGMP signaling pathway.

Keywords

NO/cGMP endothelin receptor median eminence rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagnato, A., Rosano, L., Spinella, F., Di Castro, V., Tecce, R., Natali, P. G. (2004) Endothelin B receptor blockade inhibits dynamics of cell interaction and communications in melanoma cell progression. Cancer Res. 64, 1436–1443.PubMedGoogle Scholar
  2. 2.
    Berridge, M. J., Dawson, R. M., Downes, C. P., Heslop, J. P., Irvine, R. F. (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212, 473–482.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Boulanger, C., Lusher, T. (1990) Release of endothelin from the porcine aorta: inhibition by endothe-lin-derived nitric oxide. J. Clin. Invest. 85, 587–590.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Brann, D. W., Bhat, G. K., Lamar, C. A., Mahesh, V. B. (1997) Gaseous transmitters and neuroendocrine regulation. Neuroendocrinology 65, 385–395.PubMedGoogle Scholar
  5. 5.
    Cazaubon, S., Chaverot, N., Romero, I. A., Girault, J. A., Adamson, P., Strosberg, A. D., Couraus, P. P. (1997) Growth factor activity of endothelin-1 in primary astocytes mediated by adhesion-dependent and -independent pathways. J. Neurosci. 17, 6203–6212.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Cornwell, T. N., Lincoln, T. M. (1989) Regulation of intracellular Ca++ levels in cultured vascular smooth muscle cells. Reduction of Ca++ by atriopeptin and 8-bromo-cyclic GMP is mediated by cyclic GMP-dependent protein kinase. J. Biol. Chem. 264, 1146–1155.PubMedGoogle Scholar
  7. 7.
    Costa, A., Trainer, R., Besser, M., Grossman, A. (1993) Nitric oxide modulates the release of corti-cotropin-releasing hormone from the rat hypothalamus in vitro. Brain Res. 605, 187–192.PubMedGoogle Scholar
  8. 8.
    D’Amico, M., Di Fillipo, C., Rossi, F. (1998) Depressor response to endothelin into the superior col-liculus of rats: predominant role of endothelin ETB receptor. Eur. J. Pharmacol. 347, 71–75.PubMedGoogle Scholar
  9. 9.
    De Vente, J., Hopkins, D. A., Markerink-Van Ittersum, M., Emson, P. C., Schmidt, H. H. H. W., Steinbusch, H. W. M. (1998) Distribution of nitric oxide synthase and nitric oxide-receptive cyclic GMP-producing structures in the rat brain. Neurosci. 87, 207–241.Google Scholar
  10. 10.
    Di Nunzio, A. S., Jaureguiberry, M. S., Rodano, V., Bianciotti, L. G., Vatta, M. S. (2002) Endothelin-1 and -3 diminish neuronal NE release through an NO mechanism in rat anterior hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R615-R622.Google Scholar
  11. 11.
    Ehrenreich, H., Oldenburg, J., Hassenblatt, M., Herms, J., Dembowski, C., Löffler, B. M., Brück, W., Kamrowski-Kruck, H., Gall, S., Sirén, A. L., Schilling, L. (1999) Endothelin B receptor deficient rats as a subtraction model to study the cerebral endothelin system. Neuroscience 91, 1067–1075.PubMedGoogle Scholar
  12. 12.
    Evans, J. J. (1999) Modulation of gonadotrophin levels by peptides acting at the anterior pituitary gland. Endocrinol. Rev. 20, 46–67.Google Scholar
  13. 13.
    Garrido, M. R., Israel, A. (1994) Endothelin-3 stimulates phosphoinositide hydrolysis in the subfor-nical organ and median eminence of the rat brain. Brain Res. Bull. 33, 683–688.PubMedGoogle Scholar
  14. 14.
    Hagiwara, H., Nagasawa, T., Yamamoto, T., Lodhi, K. M., Ito, T., Takemura, N., Hirose, S. (1993) Immunochemical characterization and localization of endothelin ETB receptor. Am. J. Physiol. 264, R777-R783.Google Scholar
  15. 15.
    Herbison, A. E., Simonian, S. X., Norris, P. J., Emson, P. C. (1996) Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J. Neuroendocrinol. 8, 73–82.PubMedGoogle Scholar
  16. 16.
    Hori, S., Komatsu, Y., Shigemoto, R., Mizuno, M., Nakanishi, S. (1992) Distinct tissue distribution and cellular localization of two messenger ribonucleic acids encoding different subtypes of rat endothelin receptors. Endocrinology 130, 1885–1895.PubMedGoogle Scholar
  17. 17.
    Jareguiberry, M. S., di Nunzio, A. S., Dattilo, M. A., Bianciotti, L. G., Vatta, M. S. (2004) Endothelin 1 and 3 enhance neuronal nitric oxide synthase activity through ETB receptors involving multiple signalling pathways in rat anterior hypothalamus. Peptides 25, 1133–1138.Google Scholar
  18. 18.
    Kadekaro, M., Terrell, M. L., Liu, H., Gestl, S., Bui, V., Summy-Long, J. Y. (1998) Effect of L-NAME on cerebral metabolic, vasopressin, oxytocin, and blood pressure responses in haemorrhaged rats. Am. J. Physiol. 274, R1070-R1077.Google Scholar
  19. 19.
    Kawakami, S., Ichikawa, M., Yokosuka, M., Tsukamura, H., Maeda, K. (1998) Glial and neuronal localization of neuronal nitric oxide synthase immunoreactivity in the median eminence of female rats. Brain Res. 789, 322–326.PubMedGoogle Scholar
  20. 20.
    Kawanabe, Y., Hashimoto, N., Masaki, T. (2002) Effects of extracellular Ca2+ influx on endothelin-1-induced intracellular mitogenic cascades in C6 glioma cells. Eur. J. Pharmacol. 435, 119–123.PubMedGoogle Scholar
  21. 21.
    Knowlers, R. G., Palacios, M., Palmer, R. M. J., Moncada, S. (1989) Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA 86, 5159–5162.Google Scholar
  22. 22.
    Koyama, Y., Yoshioka, Y., Hashimoto, H., Matsuda, T., Baba, A. (2000) Endothelins increase tyro-sine phosphorylation of astrocytic focal adhesion kinase and paxillin accompanied by their association with cytoesqueletal components. Neuroscience 101, 219–227.PubMedGoogle Scholar
  23. 23.
    Kumada, M., Cao, W., Kuwaki, T. (2003) Effect of endothelin on vasomotor and respiratory neurons in the rostral ventrolateral medulla in rats. Cell. Mol. Neurobiol. 23, 691–707.PubMedGoogle Scholar
  24. 24.
    Kurokawa, K., Yamada, H., Liu, Y., Kudo, M. (2000) Immunohistochemical distribution of the endothelin-converting enzyme-1 in the rat hypothalamo-pituitary axis. Neurosci. Lett. 284, 81–84.PubMedGoogle Scholar
  25. 25.
    Kurokawa, K., Yamada, H., Ochi, J. (1997) Topographical distribution of neurons containing endothelin type A receptor in the rat brain. J. Comp. Neurol. 389, 348–360.PubMedGoogle Scholar
  26. 26.
    Kuwaki, T., Ling, G. Y., Onodera, M., Ishii, T., Nakamura, A., Ju, K. H., Cao, W. H., Kumada, M., Kurihara, Y., Ohuchi, T., Yanagisawa, M., Fukuda, Y. (1999) Endothelin in the central control of cardiovascular and respiratory functions. Clin. Exp. Pharmacol. Physiol. 26, 989–994.PubMedGoogle Scholar
  27. 27.
    Lin, W. W., Lee, C. Y., Chuang, D. M. (1991) Endothelin and sarafotoxin-induced phosphoinositide hydrolysis in cultured cerebellar granule cells: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther. 257, 1053–1061.PubMedGoogle Scholar
  28. 28.
    Liu, S., Premont, R. T., Kontos, C. D., Huang, J., Rockey, D. C. (2003) Endothelin-1 activate-sendothelial cell nitric oxide synthase via heterotrimeric G-protein βγ subunit signalling to protein kinasa B/Akt. J. Biol. Chem. 50, 49929–49935.Google Scholar
  29. 29.
    Lowry, O., Rosebrough, N., Farr, A., Randall, R. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  30. 30.
    Marsault, R., Vigne, P., Breittmayer, J. P., Frelin, C. (1990) Astrocytes are target cells for endothe-lins and sarafotoxin. J. Neurochem. 54, 2142–2144.PubMedGoogle Scholar
  31. 31.
    Mathison, Y., Israel, A. (2002) Role of endothelin type B receptor in NO/cGMP signalling pathway in rat median eminence. Cell. Mol. Neurobiol. 22, 783–793.PubMedGoogle Scholar
  32. 32.
    McCumber, M. W., Ross, C. A., Snyder, S. H. (1990) Endothelin in brain: receptors, mitogenesis and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA. 87, 2358–2363.Google Scholar
  33. 33.
    Moretto, M., Lopez, F. J., Negro-Vilar, A. (1993) Nitric oxide regulates luteinizing hormone releasing hormone secretion. Endocrinology 133, 2399–2402.PubMedGoogle Scholar
  34. 34.
    Prevot, V., Bouret, S., Stefabo, G. B., Beauvillan, J. C. (2000) Median eminence nitric oxide signalling. Brain Res. Reviews 34, 21–41.Google Scholar
  35. 35.
    Rapport, S. I. (1976) Cellular calcium metabolism. Ann. Intern. Med. 98, 809–816.Google Scholar
  36. 36.
    Rettori, V., Belova, N., Dees, W. L., Nyberg, C. L., Gimeno, M., McCann, S. M. (1993) Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl. Acad. Sci. USA 90, 10130–10134.PubMedGoogle Scholar
  37. 37.
    Rossi, N. F. (2003) Regulation of vasopressin secretion by ETA and ETB receptors in compartmentalized rat hypothalamo-neurohypophysial explants. Am. J. Physiol. Endocrinol. Metab. 286, E535-E541.Google Scholar
  38. 38.
    Sakurai, T., Yanagisawa, M., Takuwa, Z., Miyazaki, H., Kimura, S., Goto, K., Masaki, T. (1990) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735.PubMedGoogle Scholar
  39. 39.
    Samson, W. K., Skala, K. D., Alexander, B. D., Huang, F. L. S. (1991) Possible neuroendocrine actions of endothelin-3. Endocrinology 128, 1465–1473.PubMedGoogle Scholar
  40. 40.
    Shichiri, M., Hirata, T., Kanno, K., Ohta, K., Emori, T., Murumo, F. (1989) Effect of endothelin-1 on release of arginine-vasopressin from perfused rat hypothalamus. Biochem. Biophys. Res. Commun. 163, 1332–1337.PubMedGoogle Scholar
  41. 41.
    Sluck, J. M., Lin, R. C. S., Katolik, L. I., Jeng, A. Y., Lehmann, J. C. (1999) Endothelin converting enzime-1, endothelin-1 and endothelin-3 like immunoreactivity in the rat brain. Neuroscience 91, 1483–1497.PubMedGoogle Scholar
  42. 42.
    Snyder, S. H., Bredt, D. (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol. Sci. 12, 125–128.PubMedGoogle Scholar
  43. 43.
    Steiner, A., Parker, C., Kipnis, D. M. (1972) Radio-immunoassay for cyclic nucleotides. J. Biol. Chem. 247, 1106–1113.PubMedGoogle Scholar
  44. 44.
    Stojilkovic, S. S., Catt, K. J. (1996) Expression and signal transduction pathways of endothelin receptors in neuroendocrine cells. Front Neuroendocrinol. 17, 327–369.PubMedGoogle Scholar
  45. 45.
    Tadepalli, A. S., Hashim, M. A. (1995) Mechanisms of central endothelin-induced hypotension. Naunyn-Schmiedeberg’s Arch. Pharmacol. 352, 108–112.Google Scholar
  46. 46.
    Yamada, H., Kurokawa, K. (1998) Histochemical studies on endothelin and endothelin-A receptor in the hypothalamus. J. Cardiovasc. Pharmacol. 31, 215–218.Google Scholar
  47. 47.
    Yamamoto, T., Suzuki, H., Uemura, H. (1997) Endothelin B receptor-like immunoreactivity is associated with LHRH-immunoreactive fibers in the rat hypothalamus. Neurosc. Lett. 223, 117–120.Google Scholar
  48. 48.
    Yamamoto, T., Uemura, H. (1998) Distribution of endothelin B receptor-like immunoreactivity in the rat brain, kidney, and pancreas. J. Cardiovasc. Pharmacol. 31, S207-S211.Google Scholar
  49. 49.
    Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Goto, K., Masaki, T. (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Yaira Mathison
    • 1
  • María Rosario del Garrido
    • 2
  • Anita Israel
    • 2
    Email author
  1. 1.School of Medicine José María VargasUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.School of Pharmacy, Laboratory of NeuropeptidesUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations