Advertisement

Acta Biologica Hungarica

, Volume 58, Issue 1, pp 1–9 | Cite as

Alterations in The Permeability of Dystrophic Fibers During Neuromuscular Junction Development

  • Maria Julia MarquesEmail author
  • Cintia Yuri Matsumura
  • H. Santo Neto
Article

Abstract

In the mdx mice, lack of dystrophin leads to increases in calcium influx and myonecrosis, followed by muscle regeneration. Synapse elimination is faster in mdx than in controls, suggesting that increases in calcium influx during development could be involved. In the present study, we evaluated whether dys-trophic fibers display changes in permeability to Evans Blue Dye (EBD) during development of the neuromuscular junction. EBD is a sensitive label for the early detection of increased myofiber permeability and sarcolemmal damage. After intraperitoneal injection of EBD, sternomastoid (STN) and tibialis anterior (T. anterior) muscles were analyzed with fluorescence microscopy. At 01, 07 and 14 days of age, STN and TA mdx myofibers were not stained with EBD. At 21 days of age, positive labeling of TA and STN mdx myofibers was seen, suggesting permeability modification and myonecrosis. Adult muscles showed a decrease (T. anterior) or no changes (STN) in the amount of EBD-positive fibers. These results suggest that there is no sarcolemmal damage detected by EBD during development of dystrophic neuromuscular junctions and other factors may contribute to the earlier synapse elimination seen in dystrophic muscle.

Keywords

calcium regulation dystrophin Evans Blue mdx neuromuscular junction synapse elimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grants 95/6110-2, 01/00570-4 and 04/15526-9). H. S. N. and M. J. M. are recipients of fellowships from Conselho Nacional de Pesquisas (301286/03-5; 302880/04-6). C.Y.M was recipient of a fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant 02/08145-3).

References

  1. 1.
    Balice-Gordon, R. J., Lichtman, J. W. (1993) In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J. Neurosci. 1, 834–855.CrossRefGoogle Scholar
  2. 2.
    Bertorini, T. E., Bhattacharya, S. K., Palmieri, G. M. M. A., Chesney, C. M., Pifer, D., Baker, B. (1982) Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32, 1088–1092.CrossRefGoogle Scholar
  3. 3.
    Brenman, J. E., Chao, D. S., Xia, H., Aldape, K., Bredt, D. S. (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82, 743–752.CrossRefGoogle Scholar
  4. 4.
    Brussee, V., Tardif, F., Tremblay, J. P. (1997) Muscle fibers of mdx mice are more vulnerable to exercise than those of normal mice. Neuromusc. Disord. 7, 487–492.CrossRefGoogle Scholar
  5. 5.
    Grounds, M. D. (2002) Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 3, 19–24.CrossRefGoogle Scholar
  6. 6.
    Hamer, P. W., McGeachie, J. M., Davies, M. J., Grounds, M. D. (2002) Evans blue dye an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J. Anat. 200, 69–79.CrossRefGoogle Scholar
  7. 7.
    Matsuda, R. A., Nishikawa, A., Tanaka, H. (1995) Vizualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J. Biochem. 118, 959–964.CrossRefGoogle Scholar
  8. 8.
    Minatel, E., Santo Neto, H., Marques, M. J. (2003) Acetylcholine receptor distribution and synapse elimination at the developing neuromuscular junction of mdx mice. Muscle Nerve 2, 561–569.CrossRefGoogle Scholar
  9. 9.
    Mokhtarian, A., Lefaucheur, J. P., Even, P. C., Sebille, A. (1995) Effects of treadmill exercise and high-fat feeding on muscle degeneration in mdx mice at the time of weaning. Clin. Sci. 89, 447–452.CrossRefGoogle Scholar
  10. 10.
    Pastoret, C., Sebille, A. (1993) Time-course study of the isometric contractile properties of mdx mouse striated muscles. J. Muscle Res. Cell M. 14, 423–431.CrossRefGoogle Scholar
  11. 11.
    Pastoret, C., Sebille, A. (1995) mdx mice show progressive weakness and muscle deterioration with age. J. Neurol. Sci. 129, 97–105.CrossRefGoogle Scholar
  12. 12.
    Pereira, E. C. L., Santo Neto, H., Marques, M. J. (2001) Immunolocalization of neuronal nitric oxide synthase at the neuromuscular junction of mdx mice: a confocal microscopy study. J. Anat. 198, 663–671.CrossRefGoogle Scholar
  13. 13.
    Personius, K. E., Sawyer, R. P. (2005) Terminal Schwann cell structure is altered in diaphragm of mdx mice. Muscle Nerve 32, 656–663.CrossRefGoogle Scholar
  14. 14.
    Porter, J. D., Baker, R. S., Ragusa, R. J., Brueckner, J. K. (1995) Extraocular muscles: basic and clinical aspects of structure and function. Surv. Ophthalmol. 39, 451–484.CrossRefGoogle Scholar
  15. 15.
    Sanes, J. R., Lichtman, J. W. (1999) Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442.CrossRefGoogle Scholar
  16. 16.
    Straub, V., Rafael, J. A., Chamberlain, J. S., Campbell, K. P. (1997) Animal models for muscular dystrophy show different patterns of sarcolema disruption. J. Cell Biol. 139, 375–385.CrossRefGoogle Scholar
  17. 17.
    Tanabe, Y., Esaki, K., Nomura, T. (1986) Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse. Acta Neuropathol. 69, 91–95.CrossRefGoogle Scholar
  18. 18.
    Torres, L. F., Duchen, L. W. (1987) The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscle and end-plates. Brain 110, 269–299.CrossRefGoogle Scholar
  19. 19.
    Vandebrouck, A., Ducret, T., Basset, O., Sebille, S., Raymond, G., Ruegg, U., Gailly, P., Cognard, C., Constantin, B. (2006) Regulation of store-operated calcium entries and mitochondrial uptake by minidystrophin expression in culture myotubes. FASEB J. 20, 36–138.CrossRefGoogle Scholar
  20. 20.
    Zhang, N., Beuve, A., Townes-Anderson, E. (2005) The nitric oxide-cGMP signaling pathway differentially regulates presynaptic structural plasticity in cone and rod cells. J. Neurosci. 25, 2761–2770.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Maria Julia Marques
    • 1
    Email author
  • Cintia Yuri Matsumura
    • 1
  • H. Santo Neto
    • 1
  1. 1.Departamento de Anatomia, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)São PauloBrazil

Personalised recommendations