Acta Biologica Hungarica

, Volume 57, Issue 4, pp 459–471 | Cite as

Amplified Fragment Length Polymorphism (AFLP) is Useful for Finding Markers Associated with QTL for Architectural Trait in Hedysarum coronarium L.

  • S. Marghali
  • H. Chennaoui
  • H. Bourguiba
  • M. Marrakchi
  • N. Trifi-FarahEmail author
Open Access


Amplified fragment length polymorphism (AFLP) has been proposed as a valuable tool for finding molecular markers linked to QTL controlling architectural trait. Segregation of polymorphic AFLP fragments was followed in F2 offsprings Hedysarum coronarium derived from two native wild accesions crossing: Jebel Zit × El Haouaria, which had previously characterised by morphological and AFLP markers. A comparison of profiles from the morphologically contrasted parental individuals and F2 offspring has been assessed using five AFLP primer combinations. These generated 178 bands revealed by silver-stained denaturing polyacrylamide gels, of which 150 were polymorphic. Several AFLP markers appeared to be implied in the orthotropic form that can assist the selection and improve Hedysarum forage crop.


AFLP markers QTL association architecture Hedysarum 



This research was supported by grants in Tunisia from the “Ministère de la Recherche Scientifique, de la Technologie et du Développement des Compétences”. We are grateful to Pr Rebai A (CB Sfax, Tunisia) for his fruitful help.


  1. 1.
    Bassam, B. J., Caetano-Anolles, G., Gresshoff P. M. (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83.CrossRefGoogle Scholar
  2. 2.
    Becker, J., Vos, P., Kuiper, M., Salamini, F., Heun, M. (1995) Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 249, 65–73.CrossRefGoogle Scholar
  3. 3.
    Beckmann, J. S., Soller, M. (1988) Detection of linkage between marker loci affecting quantitative traits in crosses between segregating populations. Theor. Appl. Genet. 76, 228–236.CrossRefGoogle Scholar
  4. 4.
    Bonierbale, M. W., Plaisted, R. L., Tanksley, S. D. (1988) RFLP maps based on common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120, 1095–1103s.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Boussaïd, M., Ben Fadhel, N., Trifi-Farah, N., Abdelkefi, A., Marrakchi, M. (1995) Mediterranean species of Hedysarum genus. Genet. Res. For. Grass Plants (Ed. I.N.R.A. et B.R.G.), France, 115–130.Google Scholar
  6. 6.
    Brahm, L., Röcher, T., Friedt, W. (2000) PCR-based markers facilitating marker assisted selection in sunflower for resistance to downy mildew. Crop Sci. 40, 676–682.CrossRefGoogle Scholar
  7. 7.
    Chalhoub, B. A., Thibault, S., Laucou, V., Rameau, C., Hofte, H., Cousin, R. (1997) Silver staining and recovery of AFLPtm amplification products on large denaturing polyacrylamide gels. Biotechniques 22, 216–220.CrossRefGoogle Scholar
  8. 8.
    Cho, Y. G., Blair, M. W., Panaud, O., McCouch, S. R. (1996) Cloning and mapping of variety-specific rice genomic DNA sequences: amplified fragment length polymorphisms (AFLP) from silver-stained polyacrylamide gels. Genome 39, 373–378.CrossRefGoogle Scholar
  9. 9.
    Cho, Y. G., McCouch, S. R., Kuiper, M., Kang, M. R., Pot, J., Groenen, J. T. M., Eun, M. Y. (1998) Integrated map of AFLP, SSLP and RFLP markers using inbred population of rice (Oryza sativa L.). Theor. Appl. Genet. 97, 370–380.CrossRefGoogle Scholar
  10. 10.
    Chong, J., Reimer, E., Somers, D., Aung, T., Penner, G. A. (2004) The Canad. J. Plant Pathol. 26, 89–96.Google Scholar
  11. 11.
    Figier, J., Espagnac, H., Combes, D., Francillon, G. (1978) Mise en évidence de types mor-phologiques dans les populations naturelles de H. coronarium de Tunisie par analyse multivariable. Rev. Gen. Bot. 85, 21–62.Google Scholar
  12. 12.
    Gebhardt, C., Ritter, E., Debener, T., Schachtschabel, U., Walkemeier, B., Uhrig, H., Salamini, F. (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor. Appl. Genet. 78, 65–75.CrossRefGoogle Scholar
  13. 13.
    Maheswaran, M., Subudhi, P. K., Nandi, S., Xu, J. C., Parco, A., Yang, D. C., Huang, N. (1997) Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor. Appl. Genet. 94, 39–45.CrossRefGoogle Scholar
  14. 14.
    Marghali, S., Panaud, O., Ghariani, S., Lamy, F., Sarr, A., Marrakchi, M., Trifi-Farah, N. (2005) Exploration of intra- and inter-population genetic diversity in Hedysarum coronarium L. revealed by AFLP markers. Genet. Res. Crop Evol. 52, 277–284.CrossRefGoogle Scholar
  15. 15.
    McCouch, S. R., Kochert, G., Yu, Z. H., Wang, Z. Y., Khush, G. S., Coffman, W. R., Tanksley, S. D. (1988) Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76, 815–829.CrossRefGoogle Scholar
  16. 16.
    Mendel, G. (1866) Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brünn 4, pp. 3–47. In: Peters, J. A. (ed.) Classic Papers in Genetics (1959). Translated as “Experiments in plant hybridization”, and reprinted Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  17. 17.
    Norusis, M. J. (1993) SPSS for Windows advanced statistics, Release 6.0. Chicago: SPSS Inc.Google Scholar
  18. 18.
    Paran, I., Michelmore, R. W. (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85, 985–993.CrossRefGoogle Scholar
  19. 19.
    Sambrook, K. J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, Second Edition.Google Scholar
  20. 20.
    SAS (Statistical Analysis System) (1990) SAS User’s Guide. Version 6,07. SAS. Circl. Bow 800 Cary, NC 27 512-8000, Cary NC: SAS Institute INC, Fourth Edition.Google Scholar
  21. 21.
    Simons, G., Van der Lee, T., Diergaarde, P., van Daelen, R., Groenendijk, J., Frijters, A., Buschges, R., Hollricher, K., Topsch, S., Shulze-Lefert, P., Salamini, F., Zabeau, M., Vos, P. (1997) AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomic. 44, 61–70.CrossRefGoogle Scholar
  22. 22.
    Suiter, K. A., Wendel, J. F., Case, J. S. (1983) LINKAGE-1. a PASCAL computer program for the detection and analysis of genetic linkage. J. Heredit. 74, 203–204.CrossRefGoogle Scholar
  23. 23.
    Tang, S., Heesacker, A., Kishore, V. K., Fernandez, A., Sadik, E. S., Cole, G., Knapp, S. J. (2003) Genetic Mapping of the Or5 Gene for Resistance to Orobanche Race E in Sunflower. Crop Sci. 43, 1021–1028.CrossRefGoogle Scholar
  24. 24.
    Tanksley, S. D., Young, N. D., Paterson, A. H., Bonierbale, M. W. (1989) RFLP mapping in plant breeding. New tool for an old science. Biotechnol. 7, 257–264.Google Scholar
  25. 25.
    Thomas, C. M., Vos, P., Zabeau, M., Jones, D. A., Norcott, K. A., Chadwick, B. P., Jones, J. D. G. (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J. 8, 785–794.CrossRefGoogle Scholar
  26. 26.
    Trifi-Farah, N., Chatti, W. S., Marrakchi, M., Pernes, J. (1989) Analyse de la variabilité mor-phologique et enzymatique des formes cultivées et spontanées de Hedysarum coronarium L. en Tunisie. Agronomi. 9, 591–598.CrossRefGoogle Scholar
  27. 27.
    Trifi-Farah, N., Marrakchi, M. (2001) Hedysarum phylogeny mediated by RFLP analysis of nuclear ribosomal DNA. Genet. Res. Crop Evol. 48, 339–345.CrossRefGoogle Scholar
  28. 28.
    Trifi-Farah, N., Marrakchi, M. (2002) Intra- and inter-specific genetic variability in Hedysarum revealed rDNA-RFLP markers. J. Genet. Breedin. 56, 1–9.Google Scholar
  29. 29.
    Trifi-Farah, N., Baatout, H., Boussaïd, M., Combes, D., Figier, J., Salhi-Hannachi, A., Marrakchi, M. (2002) Evaluation des ressources génétiques des espe`ces du genre Hedysarum dans le bassin méditer-ranéen. Plant Genet. Res. Newslette. 130, 1–6.Google Scholar
  30. 30.
    Vos, P., Hoger, R., Bleeker, M., Rejans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414CrossRefGoogle Scholar
  31. 31.
    Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • S. Marghali
    • 1
  • H. Chennaoui
    • 1
  • H. Bourguiba
    • 1
  • M. Marrakchi
    • 1
  • N. Trifi-Farah
    • 1
    Email author
  1. 1.Laboratoire de Génétique Moléculaire, Immunologie et BiotechnologieFaculté des Sciences de Tunis, Campus universitaireEl Manar, TunisTunisia

Personalised recommendations