Acta Biologica Hungarica

, Volume 57, Issue 4, pp 423–432 | Cite as

Neurotoxic and General Effects of Combined Subchronic Exposure of Rats to Insecticides and Heavy Metals

  • Zsuzsanna Lengyel
  • Anita Lukács
  • Andrea SzabóEmail author
  • L. Institóris


Three different insecticides: dimethoate, cypermethrin and amitraz were given, alone or combined with the heavy metals Pb, Hg and Cd, to male Wistar rats per os for 12 weeks from their 4th week of life. After the treatment period, the left hemisphere of the rats was exposed in urethane anaesthesia, and spontaneous and evoked cortical activity was recorded from the primary sensory areas. The effects of dimethoate on the spontaneous activity, and of dimethoate and amitraz on the evoked responses, were increased by the metal combination treatment, whereby the metals alone had no effect on the spontaneous and mild effect on the evoked activity. Finally, the animals were dissected, organ weights measured, and relative organ weights calculated. The weight gain of all treated groups was significantly retarded compared to the control. Several organ weights were also significantly reduced, mainly in groups receiving insecticide plus metal treatment. The toxic interactions observed in this work indicate that combined human exposure to environmental pesticide residues and heavy metals may have unexpectedly severe effects.


heavy metal insecticide combination neurotoxicity rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Supported by an OTKA grant, No. T042955.


  1. 1.
    Atabek, M. E., Aydin, K., Erkul, I. (2002) Different clinical features of amitraz poisoning in children. Hum. Exp. Tox. 21, 13–16.CrossRefGoogle Scholar
  2. 2.
    Boyes, W. K., Moser, V. C. (1987) Investigations of amitraz neurotoxicity in rats, II. Effects on visual evoked potentials. Fundam. Appl. Toxicol. 9, 140–153.CrossRefGoogle Scholar
  3. 3.
    Braga, M. F. M., Pereira, E. F. R., Albuquerque, E. X. (1999) Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Res. 826, 22–34.CrossRefGoogle Scholar
  4. 4.
    Brookes, N. (1992) In vivo evidence for the role of glutamate in the CNS toxicity of mercury. Toxicolog. 76, 245–256.CrossRefGoogle Scholar
  5. 5.
    Büsselberg, D. (1995) Calcium channels as target sites of heavy metals. Toxicol. Lett. 82, 255–261.CrossRefGoogle Scholar
  6. 6.
    Costa, L., Olibet, G., Wu, D. S., Murphy, S. D. (1989) Acute and chronic effects of the pesticide ami-traz on alpha 2-adrenoceptors in mouse brain. Toxicol. Lett. 47, 135–143.CrossRefGoogle Scholar
  7. 7.
    Dési, I., Dobronyi, I., Varga, L. (1986) Immuno-, neuro- and general toxicologic animal studies on a synthetic pyrethroid, cypermethrin. Ecotoxicol. Environ. Saf. 12, 220–232.CrossRefGoogle Scholar
  8. 8.
    Dési, I., Nagymajtényi, L., Schulz, H., Papp, A. (1998) Experimental model studies of pesticide exposure. NeuroToxicol. 19, 611–616.Google Scholar
  9. 9.
    Dwivedi, C., Raghunathan, R., Joshi, B. C., Foster, H. W. (1980) Effect of mercury compounds on acetylcholin transferase. Res. Commun. Chem. Pathol. Pharmacol. 30, 381–384.PubMedGoogle Scholar
  10. 10.
    Elinder, C. G. (1985) Cadmium: Uses, occurrence and intake. In: Friberg, L., Elinder, C. G., Kjellström, T. (eds) Cadmium: Uses, Occurrence and Uptake, vol. 1. CRC Press, Boca Raton, Florida, pp. 23–64.Google Scholar
  11. 11.
    Florio, J. C., Sakate, M., Palermo-Neto, J. (1993) Effects of amitraz on motor function. Pharmacol. Toxicol. 73, 109–114.CrossRefGoogle Scholar
  12. 12.
    Gilbert, M. E., Dyer, R. S. (1988) Increased hippocampal excitability produced by amitraz. Neuro-toxicol. Teratol. 10, 229–235.CrossRefGoogle Scholar
  13. 13.
    Gralewicz, S., Tomas, T., Górny, R., Kowalczyk, W., Socko, R. (1991) Changes in brain bioelectri-cal activity (EEG) after repetitive exposure to an organophosphate anticholinesterase. II. Rat. Polish J. Occup. Med. Environ. Healt. 4, 183–196.Google Scholar
  14. 14.
    Grandjean, P. (1978) Regional distribution of lead in human brains. Toxicolog. 2, 65–69.Google Scholar
  15. 15.
    Institóris, L., Papp, A., Siroki, O., Banerjee, B. D., Dési, I. (2002) Immuno- and neurotoxicological investigation of combined subacute exposure with the carbamate pesticide propoxur and cadmium in rats. Toxicolog. 178, 161–173.CrossRefGoogle Scholar
  16. 16.
    Institóris, L., Siroki, O., Dési, I. (2001) Immunotoxicological investigation of subacute combined exposure by permethrin and the heavy metals arsenic(III) and mercury(II) in rats. Int. Immuno-pharmacol. 1, 925–933.CrossRefGoogle Scholar
  17. 17.
    Institóris, L., Siroki, O., Űndeger, Ű., Basaran, N., Dési, I. (2001) Immunotoxicological investigation on rats treated subacutely with dimethoate, As3+ and Hg2+ in combination. Hum. Exp. Toxicol. 20, 329–336.CrossRefGoogle Scholar
  18. 18.
    Institóris, L., Siroki, O., Űndeger, Ű., Dési, I., Nagymajtényi, L. (1999) Immunotoxicological effects of repeated combined exposure by cypermethrin and the heavy metals lead and cadmium in rats. Int. J. Immunopharmacol. 21, 735–743.CrossRefGoogle Scholar
  19. 19.
    Jiang, H. M., Han, G. A., He, Z. L. (1990) Clinical significance of hair cadmium content in the diagnosis of mental retardation of children. Chin. Med, J. (Engl., 103, 331–334.Google Scholar
  20. 20.
    Lille, F., Hazemann, P., Garnier, R., Dally, S. (1988) Effects of lead and mercury intoxications on evoked potentials. J. Toxicol. Clin. Toxicol. 26, 103–116.CrossRefGoogle Scholar
  21. 21.
    Metherate, R., Cox, C. L., Ashe, J. H. (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosc. 12, 4701–4711.CrossRefGoogle Scholar
  22. 22.
    Moser, V. C., McPhail, R. C. (1989) Investigations of amitraz neurotoxicity in rats, III. Effects on motor activity and inhibition of monoamine oxidase. Fundam. Appl. Toxicol. 12, 12–22.CrossRefGoogle Scholar
  23. 23.
    Müller, M., Anke, M. (1994) Distribution of cadmium in the food chain (soil-plant-human) of a cadmium exposed area and the health risks of the general population. Sci. Total Environ. 156, 151–158.CrossRefGoogle Scholar
  24. 24.
    Muttray, A., Padberg, F., Jung, D., Rohlfing, H. R., Schulz, M., Konietzko, J. (1996) Acute changes in human EEG after exposure to low doses of oxydemeton methyl. Centr. Eur. J. Occup. Environ. Med. 2, 367–378.Google Scholar
  25. 25.
    Nagymajtényi, L., Schulz, H., Papp, A., Dési, I. (1997) Behavioural and electrophysiological changes caused by subchronic lead exposure in rats. Centr. Eur. J. Occup. Environ. Med. 3, 195–209.Google Scholar
  26. 26.
    Papp, A., Pecze, L., Vezér, T. (2004) Comparison of the effect of subacute organophosphate exposure on the cortical and peripheral evoked activity in rats. Pest. Biochem. Physiol. 79, 94–100.CrossRefGoogle Scholar
  27. 27.
    Papp, A., Pecze, L., Vezér, T. (2002) Central neurotoxic effects elicited with three organophosphorus compounds: comparison of acute and subchronic administration. Fiziologia (Timisoara. 12, 19–24.Google Scholar
  28. 28.
    Papp, A., Pecze, L., Vezér, T. (2005) Acute effects of lead, mercury and manganese on the central and peripheral nervous system in rats in combination with alcohol exposure. Arh. Hig. Rada Toksikol. (Zagreb. 56, 241–248.Google Scholar
  29. 29.
    Papp, A., Vezér, T., Pecze, L. (2002) Effects of inorganic and organic mercury on cortical and hip-pocampal activity in rats. Centr. Eur. J. Occup. Environ. Med. 8, 118–125.Google Scholar
  30. 30.
    Piikivi, L., Tolonen, U. (1989) EEG findings in chloralkali workers subjected to low long term exposure to mercury vapour. Br. J. Ind. Med. 46, 370–375.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Schulz, H., Nagymajtényi, L., Papp, A., Dési, I. (1997) Behavioural and neurophysiological consequences of subchronic mercury exposure in rats. Centr. Eur. J. Occup. Environ. Med. 3, 210–223.Google Scholar
  32. 32.
    Soderlund, D. M., Bloomquist, J. R. (1989) Neurotoxic actions of the pyrethroid insecticides. Ann. Rev. Entomol. 34, 77–96.CrossRefGoogle Scholar
  33. 33.
    Suszkiw, J., Toth, G., Murawsky, M., Cooper, G. P. (1984) Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and torpedo electric organ. Brain Res. 323, 31–46.CrossRefGoogle Scholar
  34. 34.
    Vataev, S. I., Malgina, N. A., Oganesian, G. A. (1994) The effect of cadmium on the structure of the circadian cycle of waking-sleep and on the EEG in Wistar rats. Zh. Evol. Biokhim. Fiziol. 30, 408–419. (In Russian)PubMedGoogle Scholar
  35. 35.
    Viaene, M. K., Masschelein, R., Leenders, J., De Groof, M., Swerts, L. J., Roels, H. A. (2000) Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup. Environ. Med. 57, 19–27.CrossRefGoogle Scholar
  36. 36.
    Vijverberg, H. P. M., van den Bercken, J. (1990) Neurotoxical effects and the modes of action of pyrethroid insecticides. Crit. Rev. Toxicol. 21, 105–126.CrossRefGoogle Scholar
  37. 37.
    Winneke, G., Altmann, L., Kramer, U., Turfeld, M., Behler, R., Gutsmuths, F. J., Mangold, M. (1994) Neurobehavioral and neurophysiological observations in six year old children with low lead levels in East and West Germany. NeuroToxicol. 15, 705–713.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Zsuzsanna Lengyel
    • 1
  • Anita Lukács
    • 1
  • Andrea Szabó
    • 1
    Email author
  • L. Institóris
    • 1
  1. 1.Department of Public Health, Faculty of MedicineUniversity of SzegedSzegedHungary

Personalised recommendations