Acta Biologica Hungarica

, Volume 57, Issue 4, pp 391–402 | Cite as

Food Restriction Induced Thyroid Changes and Their Reversal After Refeeding in Female Rats and Their Pups

  • Hamadi Fetoui
  • Hanen Bouaziz
  • Amira Mahjoubi-Samet
  • L. Soussia
  • F. Guermazi
  • Najiba ZeghalEmail author


In the present study, two groups of pregnant female rats were submitted to food restriction (24 h fast versus 24 h diet intake) from the 14th day of pregnancy until either the 14th day (group B) or the 4th day after parturition (group C). All pups and their mothers were sacrificed on day 14 after delivery. The body weight of the 14-day-old pups (group B) was 46% less than the controls (group A). Free thyroxine and free triiodothyronine levels in the plasma were reduced by 44 and 16% in pups and by 20 and 36% in their mothers, respectively. These reductions were correlated with a decrease in thyroid iodine content of the pups (−50%) and their mothers (−24%). Radioiodine uptake (131I) by the thyroid gland of pups was significantly increased by 27%. Plasma TSH levels were decreased by 38% in pups and by 44% in dams. Morphological changes in thyroid glands were observed in energy restricted dams and in their pups. Some of follicles in pups were empty. Moroever in dams, we noted the presence of peripheral resorbed vacuoles, sign of thyroid hyperactivity. After a refeeding (group C) period of ten days, total recovery occurred in plasma thyroid hormone levels (FT4 and FT3) and in thyroid iodine contents of pups in spite of a partial recovery of body weights and plasma TSH levels. In dams, a partial recovery occurred in plasma thyroid hormone levels in spite of total recovery in thyroid iodine contents, while plasma TSH levels exceeded control values. A significant amelioration in thyroid histological aspects was observed in pups and their dams.


Food restriction refeeding adult rats nursing pups thyroid hormones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank to Mrs Nabiha Mezghanni for her skillful technical assistance in radio-immunoassay determinations of FT3, FT4 and TSH plasma levels. The present work was supported by the DGRST grant (Appui à la Recherche Universitaire de Base ARUB 99/UR/08-73), Tunisia.


  1. 1.
    Ben Hamida, F., Soussia, L., Guermazi, F., Rebai, T., Zeghal, N. (2001) Effets de deux antithyroïdi-ens de synthèse (propylthiouracile et perchlorate) sur la fonction thyroïdienne de la souris en période d’allaitement Ann. Endocrinol. 62, 446–453.Google Scholar
  2. 2.
    Benvenga, S., Bartolone, L., Trimarchi, F. (1997) Thyroid iodide transporter. Local sequence homologies with thyroid autoantigens. J. Endocrinol. Invest. 20, 508–512.CrossRefGoogle Scholar
  3. 3.
    Bertin, E., Gangnerau, M. N., Bailbe, D., Portha, B. (1999) Glucose metabolism and beta-cell mass in adult offspring of rats protein and/or energy restricted during the last week of pregnancy. Am. J. Physiol. 277, 11–17.Google Scholar
  4. 4.
    Bouaziz, H., Soussia, L., Guermazi, L., Zeghal, N. (2005) Fluoride-induced thyroid proliferative changes and their reversal in female mice and their pups. Fluorid. 38, 207–214.Google Scholar
  5. 5.
    Cauvi, D., Penel, C., Nlend, M. C., Venot, N., Allasia, C., Chabaud, O. (2000) Regulation of thyroid cell volume and fluid transport. Opposite effects of TSH and iodide on cultured cells. Endocr. Metab. 279, 546–553.CrossRefGoogle Scholar
  6. 6.
    Cokelaere, M., Decuypere, E., Flo, G., Darras, V. M., Kuhn, E. R. (1996) Influence of feeding pattern on thyroid hormones in long-term food-restricted rats. Horm. Metab. Res. 28, 315–318.CrossRefGoogle Scholar
  7. 7.
    De Groot, L. J., Larsen, P. R., Henneman, G. (1996) Adult hypothyroidism. In: The Thyroid and Its Diseases. Churchill Livingston, New York, pp. 323–370.Google Scholar
  8. 8.
    Elnour, A., Lieden, S., Bourdoux, P., Eltom, M., Khalid, S. A., Hambraeus, L. (1998) Traditional fermentation increases goitrogenic activity in pearl millet. Ann. Nutr. Metab. 42, 341–349.CrossRefGoogle Scholar
  9. 9.
    Eng, P. H. K., Cardona, G. R., Fang, S. (1999) Escape from the acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinolog. 140, 3404–3410.CrossRefGoogle Scholar
  10. 10.
    Estivariz, C. F., Ziegler, T. R. (1997) Nutrition and the insulin-like growth factor system. Endocrin. 7, 65–71.CrossRefGoogle Scholar
  11. 11.
    Fish, W. A., Carlin, H., Hickey, F. C. (1952) The thyroidal uptake, retention and iodine pool in rats under controlled iodide diet. Endocrinolog. 118, 2477–2482.Google Scholar
  12. 12.
    Fishbeck, K. L., Rasmussen, K. M. (1987) Effect of repeated cycles on maternal nutritional status, lactational performance and litter growth in ad libitum-fed and chronically food-restricted rats. J. Nutr. 117, 1967–1975.CrossRefGoogle Scholar
  13. 13.
    Flint, D. J., Vernon, R. G. (1998) Effects of food restriction on the responses of the mammary gland and adipose tissue to prolactin and growth hormone in the lactating rat. J. Endocrinol. 156, 299–305.CrossRefGoogle Scholar
  14. 14.
    Gabe, M. (1968) Techniques Histologiques [Histological Technics]. Masson Publishers, Paris.Google Scholar
  15. 15.
    Gaitan, E., Cooksey, R. C., Legan, J., Lindsay, R. H. (1995) Antithyroid effects in vivo and in vitro of vitexin: a C-glucosylflavone in millet. J. Clin. Endocr. Metab. 80, 1144–1147.PubMedGoogle Scholar
  16. 16.
    Harris, H., Aschkenasi, C., Elias, C. F., Chandrankunnel, A., Nillni, E. A., Bjorbaek, C. (2001) Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signalling. J. Clin. Invest. 107, 111–120.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jack, L. J. W., Kahl, S., Germain, D. L., Capuco, A. V. (1994) Tissue distribution and regulation of 5’-deiodinase process in lactating rats. J. Endocrinol. 142, 205–215.CrossRefGoogle Scholar
  18. 18.
    Kim, M. S., Small, C. J., Stanley, S. A., Morgan, D. G., Seal, L. J., Komg, W. M. (2000) The central melanocortin system effects the hypothalamic-pituitary thyroid axis and may mediate the effect of leptin. J. Clin. Invest. 105, 1005–1011.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kume, K., Satomure, K., Nishisho, S., Kitaoka, E., Yamanouchi, K., Tobiume, S., Nagayama, M. (2002) Potential role of leptin in endochondral ossification. J. Histochem. Cytochem. 50, 159–169.CrossRefGoogle Scholar
  20. 20.
    Legradi, G., Emerson, C. H., Ahima, R. S., Flier, J. S., Lechan, R. M. (1997) Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger nucleus. Endocrinolog. 138, 2569–2576.CrossRefGoogle Scholar
  21. 21.
    Lindblom, J., Aitina, T., Fredriksson, R., Schiöth, H. B. (2005) Differential regulation of nuclear receptor, neuropeptides, and peptide hormones in the hypothalamus and pituitary of food restricted rats. Mol. Brain. Res. 133, 37–46.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mahjoubi-Samet, A., Fetoui, H., Soussia, L., Guermazi, F., Zeghal, N. (2005) Dimethoate effects on thyroid function in suckling rats. Ann. Endocrinol. 66, 96–104.CrossRefGoogle Scholar
  23. 23.
    Mandell, R. B., Mandell, L. Z., Link, J. R. (1999) Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res. 59, 661–668.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Matsuda, A., Kosugi, S. (1997) A homozygous missense mutation of the sodium/iodide symporter gene causing iodide transport defect. J. Clin. Endocr. Metab. 82, 3966–3971.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Moura, A. S., Carpinelli, A. R., Barbosa, F. B., Graverna, C., Mathias, P. C. F. (1996) Undernutrition during early lactation as an alternative model to study the onset of diabetes mellitus type II. Res. Com. Mol. Path. Pharm. 92, 73–84.Google Scholar
  26. 26.
    Oberkettor, L. V., Rasmussen, K. M. (1992) Changes in plasma thyroid hormone concentration in chronically food-restricted female rats and their offspring during suckling. J. Nutr. 122, 435–441.CrossRefGoogle Scholar
  27. 27.
    Ohlsson, C., Isgaard, J., Törnell, J., Nillsson, A., Isaksson, O. G. P., Lindahl, A. (1993) Endocrine regulation of longitudinal bone growth. Acta Pediatr. 82, 33–40.CrossRefGoogle Scholar
  28. 28.
    Ortiga-Carvalho, T. M., Oliveira, K. J., Soares, B. A., Pazos-Moura, C. C. (2002) Leptin role in the regulation of thyrotropin secretion in fed state in vivo and in vitro studies. J. Endocrinol. 174, 121–125.CrossRefGoogle Scholar
  29. 29.
    Ramos, C. F., Lima, A. P. S., Teixeira, C. V., Brito, P. D., Moura, E. G. (1997) Thyroid function in post-weaning rats whose dams were fed a low-protein diet during suckling. Braz. J. Med. Biol. Res. 30, 133–137.CrossRefGoogle Scholar
  30. 30.
    Ramos, C. F., Teixeira, C. V., Passos, M. C., Pazos-Moura, C. C., Lisboa, P. C., Curty, F. H., de Moura, E. (2000) Low-protein diet changes thyroid function in lactating rats. Proc. Soc. Exp. Biol. Med. 224, 256–263.CrossRefGoogle Scholar
  31. 31.
    Riedel, C., Levy, O., Carrasco, N. (2001) Post-transcriptional regulation of the sodium/iodide sym-porter by thyrotropin. J. Biol. Chem. 276, 21458–21463.CrossRefGoogle Scholar
  32. 32.
    Riesco, G., Taurog, A., Larsen, P. R., Krulich, L. (1977) Acute and chronic responses to iodine deficiency in rats. Endocrinolog. 100, 303–313.CrossRefGoogle Scholar
  33. 33.
    Rillema, J. A., Yu, T. X., Jhiang, S. M. (2000) Effect of prolactin on sodium iodide symporter expression in mouse mammary gland explants. Am. J. Physiol. Endocr. Metab. 279, 769–772.CrossRefGoogle Scholar
  34. 34.
    Rodriguez, F., Jolin, T. (1991) The role of somatostatin and/or dopamine in basal and TRH-stimu-lated TSH release in food restricted rats. Acta Endocrinol. 125, 186–191.CrossRefGoogle Scholar
  35. 35.
    Rouaze-Romet, M., Savu, L., Vranckx, R., Bleiberg-Daniel, F., Le Moullac, B., Gouache, P., Nunez, E. A. (1992) Re-expression of thyroxine-binding globulin in post-weaning rats during protein or energy malnutrition. Acta Endocrinol. 127, 441–448.CrossRefGoogle Scholar
  36. 36.
    Sandell, E. B., Kolthoff, I. M. (1937) Microdetermination of iodine by catalytic method. Microchem. Act. 1, 9–25.CrossRefGoogle Scholar
  37. 37.
    Santisteban, P., Obregon, M. J., Rodriguez-Pena, A., Lamas, L., Del Rey, F. E., De Escobar, G. M. (1982) Are iodine deficients rats euthyroid? Endocrinolog. 110, 1780–1789.CrossRefGoogle Scholar
  38. 38.
    Sawaya, A. L., Lun, P. G. (1985) Evidence suggesting that the elevated plasma triiodothyronine concentration of rats fed on protein deficient diets is physiologically active. Br. J. Nutr. 53, 175–181.CrossRefGoogle Scholar
  39. 39.
    Effects of streptozocin-induced diabetes and food restriction on quantities and source of T4 and T3 in rat tissues. Diabete. 41, 147–152.Google Scholar
  40. 40.
    Soussia, L., Ben Hamida, F., Guermazi, F., Zeghal, N. (2004) Induction et réversibilité d’action du thiocyanate sur la fonction thyroïdienne chez le rat en période d’allaitement. Ann. Endocrinol. 65, 451–458.CrossRefGoogle Scholar
  41. 41.
    Stasiuniene, N., Praskevicius, A. (2005) Peptides regulating food intake and body weight. Medicin. 41, 989–1001.Google Scholar
  42. 42.
    Szczepankiewicz, D., Wojciechowicz, T., Kaczmarek, P., Nowak, K. W. (2006) Leptin and its receptors in the course of pregnancy in the rat. Inter. J. Mol. Med. 17, 95–99.Google Scholar
  43. 43.
    Tazebay, U. H., Wapnir, I. L., Levy, O., Dohan, O., Zuckier, L. S., Zhao, O. H., Deng, H. F., Amenta, P. S., Fineberg, S., Pestell, R. G., Carrasco, N. (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878.CrossRefGoogle Scholar
  44. 44.
    Teixeira, C. V., Passos, M. C. F., Ramos, C. V., Dutra, S. C. P., Moura, E. G. (2002) Leptin serum concentration in rats whose mothers were submitted to malnutrition during lactation. J. Nutr. Biochem. 13, 493–498.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tian, D. R., Li, X. D., Shi, Y. S., Wang, Y., Wang, X. M., Chang, J. K., Yang, J., Han, J. S. (2004) Changes of hypothalamic alpha-MSH and CART peptide expression in diet-induced obese rats. Peptide. 25, 2147–2153.CrossRefGoogle Scholar
  46. 46.
    Uyttersprot, N., Pelgrims, N., Carrasco, N. (1997) Moderate dose of iodide in vivo inhibit cell proliferation and the expression of thyroperoxidase and Na+/I symporter mRNAs in dog thyroid. Mol. Cell. Endocrinol. 131, 195–203.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Van Haastern, G. A. C., Linkels, E., Lootwijk, W. (1995) Starvation-induced changes in the hypo-thalamic content of pro-thyrotrophin releasing hormone (pro-TRH) mRNA and hypothalamic release of pro-TRH pepetides: role of the adrenal gland. J. Endocrinol. 145, 143–153.CrossRefGoogle Scholar
  48. 48.
    Van Santen, H. M., Van Dijk, J. E., Rodermond, H., Vansenne, F., Meertens, N., Haveman, J., Endert, E., De Vijlder, J. J., Vulsma, T. (2005) The effect of cervical X-irradiation on activity index of thy-rocytes and plasma TSH: a pre-clinical model for radiation-induced thyroid damage. J. Endocrinol. Invest. 28, 261–269.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vigouroux, E. (1990) Hormonal regulation of postnatal growth: thyroid and growth hormones. In: E. Meisami, P. S. Timiras (eds), Handbook of Human Growth and Developmental Biology, Vol. II. CRC Press, Boca Raton, pp. 23–37.Google Scholar
  50. 50.
    Zeghal, N., Gondran, F., Redjem, M., Giudicelli, D., Aissouni, Y., Vigouroux, E. (1992) Iodide and T4 kinetics in plasma, thyroid gland and skin of 10-day-old rats: effects of iodine deficiency. Acta Endocrinol. 127, 425–434.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Hamadi Fetoui
    • 1
  • Hanen Bouaziz
    • 1
  • Amira Mahjoubi-Samet
    • 1
  • L. Soussia
    • 1
  • F. Guermazi
    • 2
  • Najiba Zeghal
    • 1
    Email author
  1. 1.Animal Physiology LaboratorySciences Faculty of SfaxSfaxTunisia
  2. 2.Nuclear Medicine ServiceCHU Habib Bourguiba of SfaxSfaxTunisia

Personalised recommendations