Advertisement

Acta Biologica Hungarica

, Volume 57, Issue 2, pp 201–209 | Cite as

A Study on the Antioxidant Activities of Some New Benzazole Derivatives

  • O. Temiz-Arpaci
  • T. Coban
  • B. Tekiner-Gulbas
  • B. Can-Eke
  • I. YildizEmail author
  • E. Aki-Sener
  • I. Yalcin
  • M. Iscan
Article

Abstract

The in vitro antioxidant properties of some new benzazole derivatives (1–10) such as benzoxazoles, ben-zimidazoles, and benzothiazoles were determined by their effects on the rat liver microsomal NADPH-dependent lipid peroxidation (LP) level, the scavenging of superoxide anion and the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Compounds 1, 2, 4 and 6, showed potent scavenging effect on super-oxide radical at 10−3 M. Compound 8, 5-nitro-2-(phenoxymethyl)benzimidazole, strongly inhibited lipid peroxidation at 10−3 M concentration.

Keywords

Antioxidant activity benzazole derivatives superoxide dismutase lipid peroxidation DPPH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Juliano, L., Colavita, A. R., Leo, R., Pratico, D., Violi, F. (1997) Oxygen free radicals and platelet activation. Free Radical Biol. Med. 22, 999–1006.CrossRefGoogle Scholar
  2. 2.
    Zhan, C. D., Sindhu, R. K., Pang, J., Ehdaie, A., Vaziri, N. D. (2004) Superoxide dismutase, catalase and glutathione peroxidase in the spontaneously hypertensive rat kidney: effect of antioxidant-rich diet. J. Hypertens. 22, 2025–2033.CrossRefGoogle Scholar
  3. 3.
    Lassegue, B., Griendling, K. K. (2004) Reactive oxygen species in hypertension: an update. Am. J. Hypertens. 17, 852–860.CrossRefGoogle Scholar
  4. 4.
    McIntosh, L. J., Trush, M. A., Troncoso, J. C. (1997) Increased susceptibility of Alzheimer’s disease temporal cortex to oxygen free radical-mediated processes. Free Radical Biol. 23, 183–190.CrossRefGoogle Scholar
  5. 5.
    Brikner, E., Zalejska-Fiolka, J., Antoszewski, Z. (2004) Aktywnosc enzymów antyoksydacyjnych i rola witamin o charakterze antyoksydacyjnym w chorobie Alzheimera. Postepy Hig. Med. Dosw. 58, 264–269.Google Scholar
  6. 6.
    Gupta, M., Maz, U. K., Gupta, M., Maz, U. K., Kumar, R. S, Kumar, T. S. (2004) Antitumor activity and antioxident role of Bauhinia racemosa against Ehrlich ascites carcinoma in Swiss albino mice. Acta Pharmacol. Sin. 25, 1070–1076.PubMedGoogle Scholar
  7. 7.
    Festa, F., Aglitti, T., Duranti, G., Ricordi, R., Perticone, P., Cozzi, R. (2001) Strong antioxidant activity of ellagic acid in mammalian cells in vitro revealed by the comet assay. Anticancer Res. 21, 3903–3908.PubMedGoogle Scholar
  8. 8.
    Kim, Y. T., Kim, J. W., Choi, J. S., Kim, S. H., Choi, E. K, Cho, N. H. (2004) Relation between deranged antioxidant system and cervical neoplasia. Int. J. Gynecol. Cancer. 14, 889–895.CrossRefGoogle Scholar
  9. 9.
    Sun, Y. (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radical Biol. Med. 8, 583–599.CrossRefGoogle Scholar
  10. 10.
    Nordmann, R. (1993) Free radicals, oxidative stress and antioxidant vitamins. Soc. Biol. Fil. 87, 277–285.Google Scholar
  11. 11.
    Yoo, K. M., Lee, K. W., Park, J. B., Lee, H. J., Hwang, I. K. (2004) Variation in major antioxidants and total antioxidant activity of yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J. Agric. Food Chem. 52, 5907–5913.CrossRefGoogle Scholar
  12. 12.
    Dundar, B., Bozdağ-Dündar, O., Can-Eke, B., Çoban, T., Iscan, M., Büyükbingöl, E. (2002) Synthesis and antioxidative properties of novel thiazolidinedione/imidazolidinedione compounds as retinoids. Die Pharmazie 57, 438–441.PubMedGoogle Scholar
  13. 13.
    Shih, M. H., Ke, F. Y (2004) Synthesis and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorg. and Med. Chem. 12, 4633–4643.CrossRefGoogle Scholar
  14. 14.
    Phillip, B. Q., Graf, E. (1997) Antioxidant functions of inositol 1,2,3-trisphosphate and inositol 1,2,3,6-tetrakisphosphate. Free Radical Biol. Med. 22, 939–946.CrossRefGoogle Scholar
  15. 15.
    Ölgen, S., Coban, T. (2003) Antioxidant evaluations of novel N-H and N-substituted indole esters. Biol. Pharm. Bull. 26, 736–738.CrossRefGoogle Scholar
  16. 16.
    Shi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I., Stevens, M. F. G. (1996) Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J. Med. Chem. 39, 3375–3384.CrossRefGoogle Scholar
  17. 17.
    Olsen, D. B., Carroll, S. S., Culberson, J. C., Shafer, J. A., Kuo, L. C. (1994) Effect of template secondary structure on the inhibition of HIV-1 reverse transcriptase by a pyridinone non-nucleoside inhibitor. Nucleic Acid Res. 22, 437–1443.Google Scholar
  18. 18.
    Akbay, A., Oren, I., Arpaci-Temiz, O., Aki-Sener, E. I., Yalcin, I. (2003) Synthesis and HIV-1 reverse transcriptase inhibitor activity of some 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole and oxazolo(4,5-b)pyridine derivatives. Arzneim. Forsch./Drug Res. 53, 266–271.Google Scholar
  19. 19.
    Pinar, A., Yurdakul, P., Yildiz, I., Arpaci-Temiz, O., Acan, L. N., Aki-Sener, E., Yalcin, I. (2004) Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors. Biochem. Biophy. Res. Comm. 317, 670–674.CrossRefGoogle Scholar
  20. 20.
    Kim, J. S., Sun, Q., Gatto, B., Yu, C., Liu, A., Liu, L. F., La Voie, E. J. (1996) Structure activity relationship of benzimdazoles and related heterocycles as topoisomerase I poisons. Bioorg. Med. Chem. 4, 621–630.CrossRefGoogle Scholar
  21. 21.
    Aki-Sener, E., Arpaci-Temiz, Ö., Yalcin, İ., Altanlar, N. (2000) Synthesis and microbiological activity of some novel 5-benzamido- and 5-phenylacetamido-substituted 2-phenylbenzoxazole derivatives. Il Farmaco 55, 397–405.CrossRefGoogle Scholar
  22. 22.
    Temiz-Arpaci, Ö., Ören, İ., Altanlar, N. (2002) Synthesis and antimicrobial activity of some novel 2-(p-substituted-phenyl)-5-substituted-carbonylamino benzoxazoles. Il Farmaco 57, 175–181.CrossRefGoogle Scholar
  23. 23.
    Yildrz-Ören, İ., Tekiner, B., Yalçin, İ., Temiz-Arpaci, Ö., Aki-Şener, E., Altanlar, N. (2004) Synthesis and antimicrobial activity of new 2-p-substituted-benzyl]-5-[substituted-carbonylamino]benzoxa-zoles. Archiv der Pharmazie 337, 402–410.CrossRefGoogle Scholar
  24. 24.
    Yildiz, İ, Yalçin, İ., Aki-Şener, E., Uçartürk, N. (2004) Synthesis and structure-activity relationships of new antimicrobial active multisubstituted benzazole derivatives. Eur. J. Med. Chem. 39, 291–295.CrossRefGoogle Scholar
  25. 25.
    McCord, J., Fridowich, I. (1969) An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 243, 6049–6055.Google Scholar
  26. 26.
    Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199–1200.CrossRefGoogle Scholar
  27. 27.
    İşcan, M., Arinç, E., Vural, N., İşcan, M. Y. (1984) Mixed function oxidase system of guinea-pig: a comparative study. Comp. Biochem. Physiol. 77C, 177–190.Google Scholar
  28. 28.
    Wills, E. D. (1966) Mechanism of lipid peroxide formation in animal tissues. Biochem. J. 99, 667–676.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Wills, E. D. (1969) Lipid peroxide formation in microsomes. Relationship of hydroxylation to lipid peroxide formation. Biochem. J. 113, 333–341.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bishayee, S., Balasubramanian, A. S. (1971) Lipid peroxide formation in rat brain. Neurochem. 18, 909–920.CrossRefGoogle Scholar
  31. 31.
    Gewirtz, D. A. (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727–741.CrossRefGoogle Scholar
  32. 32.
    Iscan, M. (1984) A comparative study of the effects of cadmium and nickel on liver microsomal drug metabolizing enzymes of guinea-pig in vitro. Comp. Biochem. Physiol. 79C, 429–433.Google Scholar
  33. 33.
    Al-Assadi, H. M., Rodgers, E. H., Grant, M. H. (1992) Antioxidant prevent nickel chloride inhibition of cytochrome P450 dependent mixed function oxidation in guinea-pig lung microsomes. Biochem. Soc. Trans. 21, 68S.CrossRefGoogle Scholar
  34. 34.
    Oshugi, M., Fan, W., Hase, K., Xiong, Q., Tezuka, Y., Komatsu, K., Namba, T., Saitoh, T., Tazawa, K., Kadota, S. (1999) Active-oxygen scavenging activity of tradional nourishing-tonic herbal medicines and active constituents of Rhadolia sacra. J. Ethnopharmacol. 67, 111–119.CrossRefGoogle Scholar
  35. 35.
    Kombrust, D. J., Mavis, R. D. (1980) Microsomal lipid peroxidation. II. Stimulation by carbon tetra-chloride. Mol. Pharmacol. 17, 408–414.Google Scholar
  36. 36.
    Parke, D. V., Ionnides, C., Lewis, D. F. V. ( 1991) The role of the cytochromes P450 in the detoxication and activation of drugs and other chemicals. Can. J. Physiol. Pharmacol. 69, 537–549.CrossRefGoogle Scholar
  37. 37.
    Dix, T. A., Aikens, J. (1993) Mechanisms and biological relevance of lipid peroxidation initiation. Chem. Res. Toxicol. 6, 2–18.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • O. Temiz-Arpaci
    • 1
  • T. Coban
    • 2
  • B. Tekiner-Gulbas
    • 1
  • B. Can-Eke
    • 2
  • I. Yildiz
    • 1
    Email author
  • E. Aki-Sener
    • 1
  • I. Yalcin
    • 1
  • M. Iscan
    • 2
  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyAnkara UniversityAnkaraTurkey
  2. 2.Department of Pharmaceutical Toxicology, Faculty of PharmacyAnkara UniversityAnkaraTurkey

Personalised recommendations