Acta Biologica Hungarica

, Volume 57, Issue 2, pp 247–259 | Cite as

Targeting dsRNA-Specific Single-Chain Fv Antibody Fragments to Different Cellular Locations in Nicotiana Tabacum L.

  • B. Morgun
  • A. Richter
  • S. D. Deshmukh
  • V. Stepanyuk
  • Katalin Kálai
  • G. Nagy
  • L. Hufnagel
  • Noémi LukácsEmail author


Expression of antibodies or antibody fragments in plants is a useful tool for producing active antibody derivatives for diagnostic or pharmaceutical purposes as well as for immunomodulation. We investigated the effect of cellular expression site on the stability and yield of double-stranded RNA (dsRNA)-spe-cific single-chain Fv-fragments (scFv) in transgenic tobacco. Two antibodies (J2 and P6) belonging to the V23(J558) heavy chain variable gene family but differing in the light chain variable domain were used. scFvs were targeted to the cytoplasm - with or without anchoring them in the plasma membrane -, into the endoplasmic reticulum (ER) and to the apoplast. Although high mRNA concentrations were detected in all cases, scFv proteins accumulated only when scFvs were made ER-resident by appropriate signal sequences. When the ER retention signal was removed to allow scFv-secretion to the apoplast, no scFv-proteins were detected. Despite the strong homology of the VH-sequences of J2 and P6 antibodies, only P6 provided a stable scFv scaffold for intracytoplasmic expression. J2-scFv could not be stabilised either by adding a C-terminal stabilisation signal or by anchoring the protein on the cytoplasmic side of the plasma membrane (PM). It was found that dsRNA-specific J2-scFvs are active in vivo and enhance Potato Virus Y induced symptoms in infected tobacco. This is the first report describing the expression and biological effect of RNA-specific antibodies in plants.


scFv plantibody GFP protein targeting dsRNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexin, T. (2001) Comparative sequence analysis of antigen binding sites of RNA-binding antibodies. Diploma Thesis, University of Szeged (in Hungarian).Google Scholar
  2. 2.
    An, G. H. (1985) High-efficiency transformation of cultured tobacco cells. Plant Physiol. 79, 568–570.CrossRefGoogle Scholar
  3. 3.
    Baulcomb, D. (2004) RNA silencing in plants. Nature 431, 356–363.CrossRefGoogle Scholar
  4. 4.
    De Graaf, M., Houwing, C. J., Lukács, N., Jaspars, E. M. J. (1995) RNA duplex unwinding activity of alfalfa mosaic virus RNA-dependent RNA polymerase. FEBS Lett. 371, 219–222.CrossRefGoogle Scholar
  5. 5.
    De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angenon, G., Van Montagu, M., Gerats, T., Depicker, A. (1999) High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259, 426–434.CrossRefGoogle Scholar
  6. 6.
    De Jaeger, G., De Wilde, C., Eeckhout, D., Fiers, E., Depicker, A. (2000) The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance. Plant Mol. Biol. 43, 419–428.CrossRefGoogle Scholar
  7. 7.
    Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., Leemans, J. (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13, 4777–4788.CrossRefGoogle Scholar
  8. 8.
    Eto, J., Suzuki, Y., Ohkawa, H., Yamaguchi, I. (2003) Anti-herbicide single-chain antibody expression confers herbicide tolerance in transgenic plants. FEBS Lett. 27570, 1–6.Google Scholar
  9. 9.
    Francisco, J. A., Gawlak, S. L., Miller, M., Bathe, J., Russell, D., Chace, D., Mixan, B., Zhao, L., Fell, H. P., Siegall, C. B. (1997) Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug. Chemistry 8, 708–713.CrossRefGoogle Scholar
  10. 10.
    Hull, R. (2002) Matthew’s Plant Virology. Fourth edition. Academic Press, London, pp. 293–372.CrossRefGoogle Scholar
  11. 11.
    Jobling, S. A., Jarman, C., Teh, M. M., Holmberg, N., Blake, C., Verhoeyen, M. E. (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat. Biotechnol. 21, 77–80.CrossRefGoogle Scholar
  12. 12.
    Kós, P. B., Oberstrass, J., Richter, A., Likó, I., Morgun, B. V., Lukács, N. (1999) Analysis of binding sites of dsRNA-specific monoclonal antibodies. In: Bajusz, S., Hudecz, F. (eds) Peptides. Akadémiai Kiadó, Budapest, pp. 600–601.Google Scholar
  13. 13.
    Lukács, N. (1993) Analysis of epitopes recognized by anti-viroid monoclonal antibodies. Biol. Chem. 374, 775.Google Scholar
  14. 14.
    Lukács, N., Richter, A. (1994) Antikörpersynthese in transgenen Pflanzen. Bioscope 4, 29–35.Google Scholar
  15. 15.
    Ma, J. K. C., Drake, P. M. W., Christou, P. (2003) The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4, 794–805.CrossRefGoogle Scholar
  16. 16.
    Ma, J. K. C., Hikmat, B. Y., Wycoff, K., Vine, N. D., Chargelegue, D. M., Yu, L., Hein, M. B., Lehner, T. (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat. Med. 4, 601–606.CrossRefGoogle Scholar
  17. 17.
    McCabe, J. B., Berthiaume, L. G. (1999) Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol. Biol. Cell 10, 3771–3786.CrossRefGoogle Scholar
  18. 18.
    Recombinant Phage Antibody System (RPAS).
  19. 19.
    Richter A. (1994) Expression von Doppelstrang-RNA-spezifischen Antikörpern in Pflanzen zur Untersuchung von Replikationsprozessen bei RNA-Niren in vivo. PhD thesis, Universíty of Düsseldorf.Google Scholar
  20. 20.
    Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, New York.Google Scholar
  21. 21.
    Schönborn, J., Oberstrass, J., Breyel, E., Tittgen, J., Schumacher, J., Lukács, N. (1991) Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts. Nucleic Acids Res. 19, 2993–3000.CrossRefGoogle Scholar
  22. 22.
    Schouten, A., Roosien, J., van Engelen, F. A., de Jong, G. A., Borst-Vrenssen, A. W., Zilverentant, J. F., Bosch, D., Stiekema, W. J., Gommers, F. J., Schots, A., Bakker, J. (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30, 781–793.CrossRefGoogle Scholar
  23. 23.
    Strauss, M., Kauder, F., Peisker, M., Sonnewald, U., Conrad, U., Heineke, D. (2001) Expression of an abscisic acid-binding single-chain antibody influences the subcellular distribution of abscisic acid and leads to developmental changes in transgenic potato plants. Planta 213, 361–369.CrossRefGoogle Scholar
  24. 24.
    Winter, G., Griffiths, A. D., Hawkins, R. E., Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.CrossRefGoogle Scholar
  25. 25.
    Zeitlin, L., Olmsted, S. S., Moench, T. R., Co, M. S., Martinell, B. J., Paradkar, V. M., Russell, D. R., Queen, C., Cone, R. A., Whaley, K. J. (1998) A humanized monoclonal antibody produced in trans-genic plants for immunoprotection of the vagina against genital herpes. Nat. Biotechnol. 16, 1361–1364.CrossRefGoogle Scholar
  26. 26.
    Zimmermann, S., Schillberg, S., Liao, Y. C., Fisher, R. (1998) Intracellular expression of TMV-spe-cific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol. Breeding 4, 369–379.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • B. Morgun
    • 1
  • A. Richter
    • 2
  • S. D. Deshmukh
    • 1
  • V. Stepanyuk
    • 1
  • Katalin Kálai
    • 3
  • G. Nagy
    • 3
  • L. Hufnagel
    • 4
  • Noémi Lukács
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Plant BiologyBiological Research CentreSzegedHungary
  2. 2.Institut für Physikalische BiologieHeinrich-Heine-UniversitätDüsseldorfFRG
  3. 3.Department of Plant Physiology and Plant BiochemistryCorvinus University of BudapestHungary
  4. 4.Department of Mathematics and InformaticsCorvinus University of BudapestHungary

Personalised recommendations