Advertisement

Acta Biologica Hungarica

, Volume 57, Issue 1, pp 97–103 | Cite as

In vitro Pollen Germination in Hypericum perforatum L. and Hypericum rumeliacum Boiss.

  • Hayati ArdaEmail author
  • Ciler Meric
  • Sabriye Unal
Article

Abstract

In vitro pollen germination and pollen tube growth investigations are valuable tools used in identification of the effects of environmental factors and genotypic differences on pollen viability, pollen germination and tube elongation. In this study pollen viability, in vitro pollen germination capacity, abnormality ratios and tube length in germinated pollens of Hypericum perforatum L. and H. rumeliacum Boiss. were investigated. Both of these species has spheroid-shaped and tricolporate pollen grains. The diameters of Hypericum perforatum and H. rumeliacum pollens were found as 24 ± 3 µm and 19 ± 2 µm, respectively. Pollen viability of H. perforatum and H. rumeliacum was found as 83% and 72%, respectively. The germination percentages were found as 12.85% for H. perforatum and 64.42% for H. rumeliacum. Tube lengths in germinated pollens of both taxa were measured approximately as 95.25 ± 38 µm in H. perforatum and 165.92 ± 53 µm in H. rumeliacum 4 h after inoculation. In germinated pollen grains of H. perforatum and H. rumeliacum abnormality percentages were determined as 13.23% and 43.97%, respectively. In germinated pollens of these two species, highly significant (P < 0.00001) differences in in vitro germination percents and abnormality percents were observed. Abnormalities such as swollen tube tip, branched tube, spiralled tube and excessive tube formation were observed in pollen tubes. The results of this study showed that there were obvious differences in pollen germinability between these two species growing under the same environmental conditions.

Keywords

Hypericum perforatum Hypericum rumeliacum in vitro pollen germination pollen tube growth pollen viability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We would like to thank Volkan Aksoy for carefully correcting the English of manuscript.

References

  1. 1.
    Anderson, E. D., Owens, J. N. (2000) Microsporogenesis, pollination, pollen germination and male gametophyte development in Taxus brevifolia. Ann. Bot. 86, 1033–1042.CrossRefGoogle Scholar
  2. 2.
    Arda, H. (1989) Morphological, anatomical and Caryological Studies on Hypericum L. (Guttiferae) species in Edirne Province. Inst. Sci. Technol., Trakya Univ., Master Thesis, Edirne, 51 pp. (in Turkish with an English abstract).Google Scholar
  3. 3.
    Brewbaker, J. L. (1967) The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Amer. J. Bot. 54, 1069–1083.CrossRefGoogle Scholar
  4. 4.
    Brewbaker, J. L., Kwack, B. H. (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50, 859–865.CrossRefGoogle Scholar
  5. 5.
    Cauladis, M., Badisa, R. B., Baziou, P., Chaudhuri, S. K., Pilarinou, E., Verykokidou, E., Harvala, C. (2002) Antioxidant and cytotoxic activities of Hypericum sp. on brine shrimps and human cancer cell lines. Phytother. Res. 16, 719–722.CrossRefGoogle Scholar
  6. 6.
    Chen, Y. F., Matsubayashi, Y., Sakagami, Y. (2000) Peptide growth factor phytosulfokine-??contributes to the pollen population effect. Planta 211, 752–755.CrossRefGoogle Scholar
  7. 7.
    Çetin, E., Yildirim, C., Palavan-Ünsal, N., Ünal, M. (2000) Effect of spermine and cyclohexylamine on in vitro pollen germination and tube growth in Helianthus annuus. Can. J. Plant Sci. 80, 241–245.CrossRefGoogle Scholar
  8. 8.
    Dane, F., Olgun, G., Dalgiç, Ö. (2004) In vitro pollen germination of some plant species in basic culture medium. J. Cell Mol. Bio. 3, 71–76.Google Scholar
  9. 9.
    Dönmez, A. A. (2000) Hypericum L. In: Güner, A., Özhatay, N., Ekim, T., Baser, K. H. C. (eds) Flora of Turkey and the East Aegean Islands. Vol 11 (Supplement 2). Edinburgh Univ. Press, Edinburgh, pp. 71–72.Google Scholar
  10. 10.
    Fernando, D. D., Cass, D. D. (1997) Developmental assessment of sexual reproduction in Butomus umbellatus (Butomaceae): Male reproductive component. Ann. Bot. 80, 449–456.CrossRefGoogle Scholar
  11. 11.
    Fernando, D. D., Owens, J. N., von Aderkas, P., Takaso, T. (1997) In vitro pollen tube growth and penetration of female gametophyte in Douglas fir (Pseudotsuga menziesii). Sex. Plant Reprod. 35, 209–216.CrossRefGoogle Scholar
  12. 12.
    Gwata, E. T., Wolford, D. S., Pfahler, P. L., Boote, K. J. (2003) Pollen morphology and in vitro germination characteristics of nodulating and nonnodulating soybean (Glycine max L.) genotypes. Theor. Appl. Genet. 106, 837–839.CrossRefGoogle Scholar
  13. 13.
    Koperdakova, J., Brutovska, R., Cellarova, E. (2004) Reproduction pathway analysis of several Hypericum perforatum L. somaclonal families. Hereditas 140, 34–41.CrossRefGoogle Scholar
  14. 14.
    Martonfi, P., Janikova, M., Zezula, I. (2002) Palynological analysis of seven Hypericum taxa. Biologia, Bratislava 57, 455–460.Google Scholar
  15. 15.
    Pfahler, P. L. (1981) In vitro germination of maize to detect biological activity of environmental pollutants. Environ. Health Perspect. 37, 125–132.CrossRefGoogle Scholar
  16. 16.
    Pfahler, P. L., Pereira, M. J., Barnett, R. D. (1997) Genetic variation for in vitro sesame pollen germination and tube growth. Theor. Appl. Genet. 95, 1218–1222.CrossRefGoogle Scholar
  17. 17.
    Potoglu-Erkara, I., Tokur, S. (1996) Eskisehir ve çevresinde yetisen bazı Hypericum türleri üzerinde taksonomik, morfolojik ve sitotaksonomik çalşmalar. Osmangazi Univ. Fen Bil. Enst. Master thesis, Eskisehir, 53 pp. (in Turkish with an English abstract).Google Scholar
  18. 18.
    Read, M., Bacic, A., Clarke, A. E. (1992) Pollen tube growth in culture. I. Control of morphology and generative nucleus division in cultured pollen tubes of Nicotiana, In: Ottaviano, E., Mulcahy, D. L., Sarı Gorla, M., Bergamini Mulcahy, G. (eds) Angiosperm Pollen and Ovules. Springer-Verlag, New York, pp. 162–167.CrossRefGoogle Scholar
  19. 19.
    Robson, N. K. B. (1967) Hypericum L. In: Davis, P. H. (ed.) Flora of Turkey and the East Aegean Islands. Vol. 2. Edinburgh Univ. Press, Edinburgh, pp. 355–401.Google Scholar
  20. 20.
    Robson, N. K. B. (1988) Hypericum L. In: Davis, P. H., Mill, R. R., Tan, K. (eds) Flora of Turkey and the East Aegean Islands. Vol 10 (Supplement 1). Edinburgh Univ. Press, Edinburgh, pp. 96–103.Google Scholar
  21. 21.
    Rosell, P., Herrero, M., Galan Sauco, V. (1999) Pollen germination of cherimoya (Annona cherimola Mill.). In vivo characterization and optimization of in vitro germination. Sci. Hortic. 81, 251–265.CrossRefGoogle Scholar
  22. 22.
    Roy, S. J., Holdaway-Clarke, T. L., Hackett, G. R., Kunkel, J. G., Lord, E. M., Hepler, P. K. (1999) Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J. 19, 379–386.CrossRefGoogle Scholar
  23. 23.
    Tangmitcharoen, S., Ovens, J. N. (1997) Pollen viability and pollen-tube growth following controlled pollination and their relation to low fruit production in teak (Tectona grandis Linn. f.). Ann. Bot. 35, 401–410.CrossRefGoogle Scholar
  24. 24.
    Tokur, S. (1988) Bazı Hypericum türlerinin polen morfolojisi ve verimlilig?i üzerinde çalşmalar. Marmara Üniv. Fen Bil. Der. 5, 31–37 (in Turkish with an English abstract).Google Scholar
  25. 25.
    Weterings, K., Reijnen, W., Schrauwen, J., van Herpen, M., de Groot, P., Oldenhof, M., Wullems, G. (1992) Pollen specific gene expression during development and germination in tobacco, In: Ottaviano, E., Mulcahy, D. L., Sarı Gorla, M., Bergamini Mulcahy, G. (eds) Angiosperm Pollen and Ovules. Springer-Verlag, New York, pp. 139–143.CrossRefGoogle Scholar
  26. 26.
    Wolukau, J. N., Zhang, S. L., Xu, G. H., Chen, D. (2004) The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci. Hortic. 99, 289–299.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Arts and SciencesTrakya UniversityEdirneTurkey

Personalised recommendations