Advertisement

Acta Biologica Hungarica

, Volume 57, Issue 1, pp 123–132 | Cite as

Enhancement of Mutanase Production in Trichoderma harzianum by Mutagenesis

  • A. Wiater
  • J. SzczodrakEmail author
  • M. Pleszczyńska
Article

Abstract

Conidia of Trichoderma harzianum F-340, an active producer of fungal mutanase, were mutagenized with physical and chemical mutagens used separately or in combination. After mutagenesis, the drop in conidia viability ranged from 0.004% to 71%. Among the applied mutagens, nitrosoguanidine gave the highest frequency of cultures with enhanced mutanase activity (98%). In total, 400 clones were isolated, and preliminarily evaluated for mutanase activity in flask microcultures. Eight most productive mutants were then quantified for mutanase production in shake flask cultures. The obtained results fully confirmed a great propensity of all the tested mutants to synthesize mutanase, the activity of which increased from 59 to 107% in relation to the parental T. harzianum culture. The best mutanase-overproducing mutant (T. harzianum F-340-48), obtained with nitrosoguanidine, produced the enzyme activity of 1.36 U/ml (4.5 U/mg protein) after 4 days of incubation in shake flask culture. This productivity was almost twices higher than that achieved by the initial strain F-340, and, at present, is the best reported in the literature. The potential application of mutanase in dentistry is also discussed.

Keywords

Trichoderma harzianum mutanase mutagenesis mutanase-overproducing mutants shake cultures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the BW/BS/BiNoZ/UMCS Research Programs.

References

  1. 1.
    Balasubramanian, N., Juliet, G. A., Srikalaivani, P., Lalithakumari, D. (2003) Release and regeneration of protoplasts from the fungus Trichothecium roseum. Can. J. Microbiol. 49, 263–268.CrossRefGoogle Scholar
  2. 2.
    Ebisu, S., Kato, K., Kotani, S., Misaki, A. (1975) Isolation and purification of Flavobacterium α-1,3- glucanase-hydrolyzing, insoluble, sticky glucan of Streptococcus mutans. J. Bacteriol. 35, 1489–1501.Google Scholar
  3. 3.
    Fiedurek, J., Ilczuk, Z. (1978) Mutagenization of Aspergillus niger with pectinolytic activity under conditions of submerged culture (in Polish). Ann. Univ. Maria Curie-Sklodowska, Sec. C 33, 29–39.Google Scholar
  4. 4.
    Fuglsang, C. C., Berka, R. M., Wahleithner, J. A., Kauppinen, S., Shuster, J. R., Rasmussen, G., Halkier, T., Dalbøge, H., Henrissat, B. (2000) Biochemical analysis of recombinant fungal mutanases. A new family of ?1,3-glucanases with novel carbohydrate-binding domains. J. Biol. Chem. 275, 2009–2018.CrossRefGoogle Scholar
  5. 5.
    Guggenheim, B., Haller, R. (1972) Purification and properties of an ?-(1?3) glucanohydrolase from Trichoderma harzianum. J. Dent. Res. 51, 394–402.CrossRefGoogle Scholar
  6. 6.
    Gyémánt, G., Kandra, L., Nagy, V., Somsák, L. (2003) Inhibition of human salivary ?-amylase by glucopyranosylidene-spiro-thiohydantoin. Biochem. Biophys. Res. Comm. 312, 334–339.Google Scholar
  7. 7.
    Hare, M. D., Svensson, S., Walker, G. J. (1978) Characterization of extracellular, water-insoluble ?- D-glucans of oral streptococci by methylation analysis, and by enzymic synthesis and degradation. Carbohydr. Res. 66, 245–264.CrossRefGoogle Scholar
  8. 8.
    Ilczuk, Z., Fiedurek, J., Paszczynski, A. (1983) Intensification of amylase synthesis with Aspergillus niger by way of multistage mutagenization. Starch/Stärke 35, 397–400.CrossRefGoogle Scholar
  9. 9.
    Inoue, M., Egami, T., Yokogawa, K., Kotani, H., Morioka, T. (1975) Isolation, identification and some cultural conditions of Streptomyces species that produce water-insoluble polyglucan hydrolase. Agric. Biol. Chem. 39, 1391–1400.Google Scholar
  10. 10.
    Inoue, M., Yakushiji, T., Mizuno, J., Yamamoto, Y., Tanii, S. (1990) Inhibition of dental plaque formation by mouthwash containing an endo-?-1,3 glucanase. Clin. Prevent. Dent. 12, 10–14.Google Scholar
  11. 11.
    Kandra, L., Gyémánt, G. (2000) Examination of the active sites of human salivary ?-amylase (HSA). Carbohydr. Res. 329, 579–585.CrossRefGoogle Scholar
  12. 12.
    Kandra, L., Gyémánt, G., Remenyik, J., Ragunath C., Ramasubbu, N. (2003) Subsite mapping of human salivary ?-amylase and the mutant Y151M. FEBS Lett. 544, 194–198.CrossRefGoogle Scholar
  13. 13.
    Kandra, L., Gyémánt, G., Zajácz, A., Batta, G. (2004) Inhibitory effects of tannin on human salivary α-amylase. Biochem. Biophys. Res. Comm. 319, 1265–1271.CrossRefGoogle Scholar
  14. 14.
    Kelstrup, J., Holm-Pedersen, P., Poulsen, S. (1978) Reduction of formation of dental plaque and gingivitis in humans by crude mutanase. Scand. J. Dent. Res. 86, 93–102.PubMedGoogle Scholar
  15. 15.
    Mandels, M., Parrish, F. W., Reese, E. T. (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J. Bacteriol. 83, 400–408.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Martin, K. (1950) Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 38, 215–220.CrossRefGoogle Scholar
  17. 17.
    Matsuda, S., Kawanami, Y., Takeda, H., Ooi, T., Kinoshita, S. (1997) Purification and properties of mutanase from Bacillus circulans. J. Ferment. Bioeng. 83, 593–595.CrossRefGoogle Scholar
  18. 18.
    Nelson, N. (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380.Google Scholar
  19. 19.
    Quivey, R. G., Kriger, P. S. (1993) Raffinose-induced mutanase production from Trichoderma harzianum. FEMS Microbiol. Lett. 112, 307–312.CrossRefGoogle Scholar
  20. 20.
    Schacterle, G. R., Pollack, R. L. (1973) A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 51, 654–655.CrossRefGoogle Scholar
  21. 21.
    Somogyi, M. (1945) A new reagent for the determination of sugars. J. Biol. Chem. 160, 61–68.Google Scholar
  22. 22.
    Stephen, E. R., Nasim, A. (1981) Production of protoplasts in different yeasts by mutanase. Can. J. Microbiol. 27, 550–553.CrossRefGoogle Scholar
  23. 23.
    Szczodrak, J., Pleszczynska, M., Fiedurek, J. (1994) Penicillium notatum 1 a new source of dextranase. J. Ind. Microbiol. 13, 315–320.CrossRefGoogle Scholar
  24. 24.
    Szczodrak, J. (1989) The use of cellulases from a β-glucosidase-hyperproducing mutant of Trichoderma reesei in simultaneous saccharification and fermentation of wheat straw. Biotechnol. Bioeng. 33, 1112–1116.CrossRefGoogle Scholar
  25. 25.
    Szekeres, A., Kredics, L., Antal, Z., Kevei, F., Manczinger, L. (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol. Lett. 233, 215–222.CrossRefGoogle Scholar
  26. 26.
    Tsuchiya, R., Fuglsang, C. C., Johansen, C., Aaslyng, D. (1998) Effect of recombinant mutanase and recombinant dextranase on plaque removal. J. Dent. Res. 77 (Sp. Iss. B), 2713.Google Scholar
  27. 27.
    Wiater, A., Szczodrak, J., Pleszczynska, M., Próchniak, K. (2005) Production and use of mutanase from Trichoderma harzianum for effective degradation of streptococcal mutans. Braz. J. Microbiol. 36, 137–146.CrossRefGoogle Scholar
  28. 28.
    Wiater, A., Szczodrak, J., Rogalski, J. (2001) Purification and characterization of an extracellular mutanase from Trichoderma harzianum. Mycol. Res. 103, 1357–1363.CrossRefGoogle Scholar
  29. 29.
    Wiater, A., Szczodrak, J., Rogalski, J. (2004) Hydrolysis of mutant and prevention of its formation in streptococcal films by fungal ?-D-glucanases. Proc. Biochem. 39, 1481–1489.CrossRefGoogle Scholar
  30. 30.
    Zaldivar M., Velásques, J. C., Contreras I., Pérez, L. A. (2001) Trichoderma aueroviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. E. J. Biotechnol. 4 (3), 160–168.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Industrial MicrobiologyMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations