Acta Biologica Hungarica

, Volume 56, Issue 3–4, pp 205–214 | Cite as

Stimulus Frequency Dependence of the Central and Peripheral Somatosensory Evoked Activity in Rats Treated with Various Pesticides

  • Andrea SzabóEmail author
  • A. Papp
  • L. Nagymajtényi


Rats were treated with a combination of insecticide agents in different timing schemes. In acute administration, 1/5 LD50 of the three insecticides: dimethoate, propoxur and cypermethrin, or their combination, was given once by gavage. In the developmental model, female rats received oral doses of 1/25 LD50 of the above insecticides in combination in three timing schemes including pregnancy and lactation. Responses in the somatosensory cortex and in the tail nerve, evoked by peripheral electric stimulation, were recorded in acute preparation under urethane anesthesia. It was tested whether the parameters of the cortical and peripheral evoked response are dependent on the frequency and whether this dependence is different in control and treated animals. The latency increase of the cortical responses with increasing stimulation frequency was significantly stronger in rats treated acutely with cypermethrin and the combination, and in rats receiving the combination during both intra- and extrauterine development. On the duration, the effects were less clear. Frequency dependent increase of the tail nerve action potential latency was significantly intensified by cypermethrin, and the amplitude decrease, by cypermethrin and dimethoate. Fatigue of this response during a stimulation series was also altered by the insecticides. Frequency dependence and fatigue possibly reflect the actual state of the nervous system and may have the potency to be developed to functional biomarkers.


Insecticides somatosensory system cortical activity peripheral activity fatigue rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbassy, M. A., Eldefrawi, M. E., Eldefrawi, A. T. (1983) Pyrethroid action on the nicotinic acetylcholine receptor/channel. Pestic. Biochem. Physiol. 19, 299–308.CrossRefGoogle Scholar
  2. 2.
    Alvares, A. (1992) Pharmacology and toxicology of carbamates. In: Ballantyne, B., Marrs, T. C. (eds) Clinical and Experimental Toxicology of Organophosphates and Carbamates. Butterworth and Heinemann, Oxford, London, Boston, pp. 40–46.CrossRefGoogle Scholar
  3. 3.
    Arakawa, K., Peachey, N. S., Celesia, G. G., Rubboli, G. (1993) Component specific effects of physostigmine on the cat visual evoked potential. Exp. Brain Res. 95, 271–276.CrossRefGoogle Scholar
  4. 4.
    Azaroff, L. S. (1999) Biomarkers of exposure to organophosphorous insecticides among farmers’ families in rural El Salvador: Factors associated with exposure. Environ. Res. 80, 138–147.CrossRefGoogle Scholar
  5. 5.
    Bowman, W. C., Rand, M. J. (1980) Textbook of Pharmacology. Oxford, Blackwell Scientific Publications, p. 715.Google Scholar
  6. 6.
    Custodio-Ramírez, V., Paz, C. (1997) Ozone produces functional deficits in the rat visual pathway. Electroenceph. Clin. Neurophysiol. 104, 269–273.CrossRefGoogle Scholar
  7. 7.
    Devaud, L. L., Murray, T. F. (1988) Involvement of peripheral-type benzodiazepine receptors in the proconvulsant actions of pyrethroid insecticides. J. Pharmacol. Exp. Ther. 247, 14–22.PubMedGoogle Scholar
  8. 8.
    Dési, I., Nagymajtényi, L., Schulz, H. (1994) EEG changes caused by dimethoate in three generations of rats. Neurotoxicol. 15, 731–734.Google Scholar
  9. 9.
    Dési, I., Nagymajtényi, L. (1999) Electrophysiological biomarkers of an organophosphorous pesticide, dichlorvos. Toxicol. Lett. 107, 55–64.CrossRefGoogle Scholar
  10. 10.
    Duffy, F. H., Burchfiel, J. L., Bartels, P. H. (1979) Long-term effects of an organophosphate upon the human electroencephalogram. Toxicol. Appl. Pharmacol. 47, 161–176.CrossRefGoogle Scholar
  11. 11.
    Gralewicz, S., Tomas, T., Gorny, R., Kowalczyk, W., Socko, R. (1991) Changes in brain bioelectrical activity (EEG) after repetitive exposure to an organophosphate anticholinesterase. II. Rat. Polish J. Occup. Med. Environ. Health. 4, 183–196.Google Scholar
  12. 12.
    Kadous, A., Matsumura, F., Enan, E. (1994) High affinity binding of 3-verapamil to rat brain synaptic membrane is antagonized by pyrethroid insecticides. J. Environ. Sci. Health 29, 855–871.CrossRefGoogle Scholar
  13. 13.
    Koelle, G. B. (1975) Anticholinesterase agents. In: Goodman, L. S., Gilman, A., Gilman, A. G., Koelle, G. B. (eds) The Pharmacological Basis of Therapeutics. Macmillan, New York, pp. 445–466.Google Scholar
  14. 14.
    Koelle, G. B. (1992) Pharmacology and toxicology of organophosphates. In: Ballantyne, B., Marrs, T. C. (eds) Clinical and Experimental Toxicology of Organophosphates and Carbamates. Butterworth-Heinemann, Oxford, pp. 35–39.CrossRefGoogle Scholar
  15. 15.
    Lawrence, L. J., Casida, J. E. (1983) Stereospecific action of pyrethroid insecticides on the gammaaminobutyric acid receptor-ionophore complex. Science 221, 1399–1401.CrossRefGoogle Scholar
  16. 16.
    Leahey, J. P. (1985) The Pyrethroid Insecticides. Taylor and Francis, London.Google Scholar
  17. 17.
    Metherate, R., Cox, C. L., Ashe, J. H. (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acethylcholine. J. Neurosci. 12, 4701–4711.CrossRefGoogle Scholar
  18. 18.
    Michelangeli, F., Robson, M. J., East, J. M., Lee, A. G. (1990) Fluorescence and kinetic studies of the interactions of pyrethroids with the (Ca2++Mg2+)-ATPase. Biochim. Biophys. Acta 1028, 58–66.CrossRefGoogle Scholar
  19. 19.
    Moore, C. I. (2003) Frequency-dependent processing in the vibrissa sensory system. J. Neurophysiol. 91, 2390–2399.CrossRefGoogle Scholar
  20. 20.
    Nagymajtényi, L., Dési, I., Lorenz, R. (1988) Neurophysiological markers as early signs of organophosphate neurotoxicity. Neurotoxicol. Teratol. 10, 429–434.CrossRefGoogle Scholar
  21. 21.
    Nagymajtényi, L., Dési, I., Schulz, H. (1994) Changes of brain evoked potentials caused by dimethoate treatment in three generations of rats. Neurotoxicol. 15, 741–744.Google Scholar
  22. 22.
    Narahashi, T. (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol. Sci. 13, 236–241.CrossRefGoogle Scholar
  23. 23.
    Narahashi, T. (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 78, 1–14.CrossRefGoogle Scholar
  24. 24.
    Oortgiesen, M., Van Kleef, R. G. D. M., Vijverberg, H. P. M. (1989) Effect of pyrethroids on neurotransmitter- operated ion channels in cultured mouse neuroblastoma cells. Pestic. Biochem. Physiol. 34, 164–173.CrossRefGoogle Scholar
  25. 25.
    Otto, D., Benignus, V., Muller, K., Barton, C. (1981) Effects of age and body lead burden on CNS function in young children. I. Slow cortical potentials. Electroenceph. Clin. Neurophys. 52, 229–239.CrossRefGoogle Scholar
  26. 26.
    Papp, A., Vezér, T., Institoris, L. (2001) An attempt to interpret the fatigue of the somatosensory cortical evoked potential during a stimulus train as a possible biomarker of neurotoxic exposure. Centr. Eur. J. Occup. Environ. Med. 7, 276–281.Google Scholar
  27. 27.
    Reddy, P. M., Philip, G. H., Bashamohideen, M. (1991) Inhibition of Mg2+ and Na+-K+ ATPases in selected tissues of fish, Cyprinus carpio under fenvalerate toxicity. Biochem. Int. 23, 715–721.PubMedGoogle Scholar
  28. 28.
    Soderlund, D. M., Bloomquist, J. R. (1989) Neurotoxic actions of the pyrethroid insecticides. Ann. Rev. Entomol. 34, 77–96.CrossRefGoogle Scholar
  29. 29.
    Thiesen, F. W., Baross, H. M., Tannhauser, M., Annhauser, S. L. (1999) Behavioral changes and cholinesterase activity of rats acutely treated with propoxur. Jpn. J. Pharmacol. 79, 25–31.CrossRefGoogle Scholar
  30. 30.
    Tracey, D. J., Waite, P. M. (1995) Somatosensory system. In: Paxinos, G. (ed.) The Rat Nervous System. Academic Press, San Diego, Vol. 2, pp. 689–704.Google Scholar
  31. 31.
    Urban, P., Lukás, E., Benicky, L., Moscovicova, E. (1996) Neurological and electrophysiological examination on workers exposed to mercury vapors. Neurotoxicol. 20, 191–196.Google Scholar
  32. 32.
    Vijverberg, H. P. M., van den Bercken, J. (1990) Neurotoxical effects and the modes of action of pyrethroid insecticides. Crit. Rev. Toxicol. 21, 105–126.CrossRefGoogle Scholar
  33. 33.
    WHO (1986a) Organophosphorous Insecticides: A General Introduction. Environmental Health Criteria 63. WHO, Geneva.Google Scholar
  34. 34.
    WHO (1986b) Carbamate pesticides: a general introduction. Environmental Health Criteria 64. WHO, Geneva.Google Scholar
  35. 35.
    WHO (1989a) Cypermethrin. Environmental Health Criteria 82. WHO, Geneva.Google Scholar
  36. 36.
    WHO (1989b) Dimethoate. Environmental Health Criteria 90. WHO, Geneva.Google Scholar
  37. 37.
    WHO/FAO Working Groups (1989c) Propoxur. FAO Plant Product. Protect. Paper 100/2, 183–214.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Public Health, Faculty of MedicineUniversity of SzegedSzegedHungary

Personalised recommendations