Advertisement

Acta Biologica Hungarica

, Volume 56, Issue 3–4, pp 333–343 | Cite as

Radioprotection of Turmeric Extracts in Bacterial System

  • A. Pal
  • A. K. PalEmail author
Article

Abstract

The present study investigates the possible role of crude turmeric extracts in radioprotection by a variety of methods. Although curcumin, the main bioactive component of turmeric, has been extensively used in such studies, the efficiency of the crude extracts has been poorly investigated. This study revealed that dimethyl sulfoxide (DMSO) extracts of turmeric produces a significant amount of radioprotection, which is very similar in nature and extent to that imparted by curcumin. Field Inversion Gel Electrophoresis (FIGE) studies also clearly showed the protection offered by turmeric extracts against X-ray induced DNA damage of E. coli WP2s(λ) cells.

Keywords

Curcumin turmeric extracts free radicals DNA damage radioprotection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammon, H. P. T., Wahl, M. A. (1991) Pharmacology of Curcuma longa. Planta Med. 46, 1–7.CrossRefGoogle Scholar
  2. 2.
    Birren, B., Lai, E. (1993) Pulsed Field Gel Electrophoresis - A Practical Guide. Academic Press, San Diego.Google Scholar
  3. 3.
    Chapman, J. D., Doren, S. D., Reuvers, A. P., Gillespie, C. J., Chatterjee, A., Blakely, E. A., Smith, K. C., Tobias, C. A. (1979) Radioprotection by DMSO of mammalian cells exposed to X-rays and to heavy charged-particle beams. Radiat. Environ. Biophys. 46, 29–41.CrossRefGoogle Scholar
  4. 4.
    Choudhary, D., Chandra, D., Kale, R. K. (1999) Modulation of radioresponse of glyoxalase system by curcumin. J. Ethnopharmacol. 46, 1–7.Google Scholar
  5. 5.
    Inano, H., Onoda, M., Inafuku, N., Kubota, M., Kamada, Y., Osawa, T., Kobayashi, H., Wakabayashi, K. (2000) Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 46, 1835–1841.CrossRefGoogle Scholar
  6. 6.
    Kapoor, S., Priyadarsini, K. I. (2001) Protection of radiation-induced protein damage by curcumin. J. Biophys. Chem. 46, 119–126.CrossRefGoogle Scholar
  7. 7.
    Oda, Y. (1995) Inhibitory effect of curcumin on SOS functions induced by UV-irradiation. Mutat. Res. 46, 67–73.CrossRefGoogle Scholar
  8. 8.
    Pal, A., Pal, A. K. (2000) Studies on the genotoxicity of turmeric extracts in bacterial system. Int. J. Antimicrob. Agents. 46, 415–417.CrossRefGoogle Scholar
  9. 9.
    Raaphorst, G. P., Azzam, E. I. (1985) Fixation of radiation-induced potentially lethal damage by anisotonic treatment and its modification by DMSO or BrdUrd in V79 cells. Radiat. Environ. Biophys. 46, 175–84.CrossRefGoogle Scholar
  10. 10.
    Rao, M. N. A. (1997) Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 46, 105–107.Google Scholar
  11. 11.
    Reddy, A. C., Lokesh, B. R. (1992) Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol. Cell. Biochem. 46, 117–124.Google Scholar
  12. 12.
    Sharma, A., Gautam, S., Jadhav, S. S. (2000) Spice extracts as dose-modifying factors in radiation inactivation of bacteria. J. Agric. Food Chem. 46, 1340–1344.CrossRefGoogle Scholar
  13. 13.
    Sharma, O. P. (1976) Antioxidant activity of curcumin and related compounds. Biochem. Pharma. 46, 1811–1812.CrossRefGoogle Scholar
  14. 14.
    Shih, C. A., Lin, J. K. (1993) Inhibition of 8-hydroxy-guanosine formation by curcumin in mouse fibroblast cells. Carcinogenesis 46, 709–712.CrossRefGoogle Scholar
  15. 15.
    Simon, A., Allias, D. P., Duroux, J. L., Basly, J. P., Fontainer, S. D., Delage, C. (1998) Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationship. Cancer Lett. 46, 111–116.CrossRefGoogle Scholar
  16. 16.
    Srimal, R. C., Dhawan, B. N. (1973) Pharmacology of diferuloyl methane (curcumin), a nonsteroidal anti-inflammatory agent. J. Pharm. Pharmacol. 46, 447–452.CrossRefGoogle Scholar
  17. 17.
    Subramanian, M., Sreejayan, N., Rao, M. N. A., Devasagayam, T. P. A., Singh, B. B. (1994) Diminuation of singlet-oxygen induced DNA damage by curcumin and related antioxidants. Mutat. Res. 46, 249–255.CrossRefGoogle Scholar
  18. 18.
    Thresiamma, K. C., George, J., Kuttan, R. (1998) Protective effect of curcumin, ellagic acid and bixin on radiation induced genotoxicity. J. Exp. Clin. Cancer Res. 46, 431–434.Google Scholar
  19. 19.
    Varadkar, P., Dubey, P., Krishna, M., Verma, N. C. (2001) Modulation of radiation-induced protein kinase C activity by phenolics. J. Radiol. Prot. 46, 361–370.CrossRefGoogle Scholar
  20. 20.
    Watanabe, M., Suzuki, M., Suzuki, K., Hayakawa, Y., Miyazaki, T. (1990) Radioprotective effects of dimethyl sulfoxide in golden hamster embryo cells exposed to gamma rays at 77K. II. Protection from lethal, chromosomal, and DNA damage. Radiat. Res. 46, 73–78.CrossRefGoogle Scholar
  21. 21.
    Weber, C., Podda, M., Rallis, M., Thiele, J. J., Traber, M. G., Packer, L. (1997) Efficacy of topically applied tocopherols and tocotrienols in protection of murine skin from oxidative damage induced by UV-irradiation. Free Rad. Bio. Med. 46, 761–769.CrossRefGoogle Scholar
  22. 22.
    Zhao, B. L., Li, X. J., Cheng, S. J., Xin, W. J. (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophysics 46, 175–185.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Biophysics DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations