Transgenic Mice, Carrying an Expressed Anti-HIV Ribozyme in Their Genome, Show No Sign of Phenotypic Alterations

Abstract

Transgenic mice are suitable model animals for testing the in vivo functionality of custom-tailored ribozymes. Transgenic experiments can demonstrate whether a ribozyme is able to cleave any RNA transcript of the host animal or not. Most probably, this kind of cleavage activity gives rise to phenotypic alterations in mice. In the present paper we demonstrate that an anti-HIV ribozyme does not cause any detectable phenotypic effect in mice carrying and expressing it. Our transgenic mice developed well and were indistinguishable from their wild type counterparts.

References

  1. 1.

    Beebe, J. A., Fierke, C. A. (1994) A kinetic mechanism for cleavage of precursor tRNA (Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry 33, 10294–10304.

    CAS  Article  Google Scholar 

  2. 2.

    Castanotto, D., Rossi, J. J., Sarver, N. (1994) Antisense catalytic RNAs as therapeutic agents. Adv. Pharmacol. 25, 289–317.

    CAS  Article  Google Scholar 

  3. 3.

    Castanotto, D., Scherr, M., Rossi, J. J. (2000) Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol. 313, 401–420.

    CAS  Article  Google Scholar 

  4. 4.

    Chang, P. S., Cantin, E. M., Zaia, J. A., Ladne, P. A., Stephens, D. A., Sarver, N., Rossi, J. J. (1990) Ribozyme-mediated site-specific cleavage of the HIV-1 genome. Clinical Biotechnology 2, 23–31.

    Google Scholar 

  5. 5.

    Chowrira, B. M., Burke, J. M. (1991) Binding and cleavage of nucleic acids by the “hairpin” ribozyme. Biochemistry 30, 8518–8522.

    CAS  Article  Google Scholar 

  6. 6.

    Diener, T. O. (1991) Subviral pathogens of plants: viroids and viroidlike satellite RNAs. FASEB J. 5, 2808–2813.

    CAS  Article  Google Scholar 

  7. 7.

    Forster, A. C., Symons, R. H. (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220.

    CAS  Article  Google Scholar 

  8. 8.

    Guerrier-Takada, C., Altman, S. (2000) Inactivation of gene expression using ribonuclease P and external guide sequences. Methods Enzymol. 313, 442–456.

    CAS  Article  Google Scholar 

  9. 9.

    Hampel, A., Tritz, R., Hicks, M., Cruz, P. (1990) ‘Hairpin’ catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. Nucleic Acids Res. 18, 299–304.

    CAS  Article  Google Scholar 

  10. 10.

    Haseloff, J., Gerlach, W. L. (1988) Simple RNA enzymes with new and highly specific endoribonu-clease activities. Nature 334, 585–591.

    CAS  Article  Google Scholar 

  11. 11.

    Herschlag, D., Cech, T. R. (1990) Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 29, 10159–10171.

    CAS  Article  Google Scholar 

  12. 12.

    Hertel, K. J., Herschlag, D., Uhlenbeck, O. C. (1994) A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33, 3374–3385.

    CAS  Article  Google Scholar 

  13. 13.

    Hogan, B., Beddington, R., Costantini, F., Lacy, E. (1994) Manipulating the Mouse Embryo. A Laboratory Manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  14. 14.

    Hutchins, C. J., Rathjen, P. D., Forster, A. C., Symons, R. H. (1986) Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640.

    CAS  Article  Google Scholar 

  15. 15.

    Locardi, C., Puddu, P., Ferrantini, M., Parlanti, E., Sestili, P., Varano, F., Belardelli, F. (1992) Persistent infection of normal mice with human immunodeficiency virus. J. of Virology 66, 1649–1654.

    Google Scholar 

  16. 16.

    Perrotta, A. T., Been, M. D. (1992) Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence. Biochemistry 31, 16–21.

    CAS  Article  Google Scholar 

  17. 17.

    Phylactou, L. A., Darrah, C., Everatt, L., Maniotis, D., Kilpatrick, M. W. (2000) Utilization of properties of natural catalytic RNA to design and synthesize functional ribozymes. Methods Enzymol. 313, 485–506.

    CAS  Article  Google Scholar 

  18. 18.

    Pyle, A. M., Green, J. B. (1994) Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry 33, 2716–2725.

    CAS  Article  Google Scholar 

  19. 19.

    Roossinck, M. J., Sleat, D., Palukaitis, P. (1992) Satellite RNAs of plant viruses: structures and biological effects. Microbiol. Rev. 56, 265–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning. A laboratory Manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  21. 21.

    Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., Rossi, J. J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225.

    CAS  Article  Google Scholar 

  22. 22.

    Uhlenbeck, O. C. (1987) A small catalytic oligoribonucleotide. Nature 328, 596–600.

    CAS  Article  Google Scholar 

  23. 23.

    Zaug, A. J., Been, M. D., Cech, T. R. (1986) The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 324, 429–433.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. L. Katona.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Katona, R.L., Cserpán, I., Fátyol, K. et al. Transgenic Mice, Carrying an Expressed Anti-HIV Ribozyme in Their Genome, Show No Sign of Phenotypic Alterations. BIOLOGIA FUTURA 56, 67–74 (2005). https://doi.org/10.1556/ABiol.56.2005.1-2.7

Download citation

Keywords

  • Transgenic
  • mice
  • ribozyme
  • HIV
  • in vivo model