Acta Biologica Hungarica

, Volume 55, Issue 1–4, pp 353–361 | Cite as

Opiate Alkaloids in Ascaris Suum

  • S. C. PryorEmail author
  • Jennifer Putnam
  • Nanyamka Hoo


The parasitic worm Ascaris suum contains the opiate alkaloids morphine and morphine-6-glucuronide as determined by HPLC coupled to electrochemical detection and by gas chromatography/mass spectrometry. The level of morphine in muscle tissue of female and male is 252 ± 32.68, 1168 ± 278 and 180 ± 23.47 (ng/g of wet tissue), respectively. The level of M6G in muscle tissue of female and male is 167 ± 28.37 and 92 ± 11.45 (ng/g of wet tissue), respectively. Furthermore, Ascaris maintained for 5 days contained a significant amount of morphine, as did their medium, demonstrating their ability to synthesize the opiate alkaloid. The anatomic distribution of morphine was examined by indirect immunofluorescent staining and HPLC of various tissues dissected from male and female adult worms. Immunofluorescence revealed morphine in the subcuticle layers, in the animals’ nerve chords and in the female reproductive organs. Morphine was found to be most prevalent in the muscle tissue and there is significantly more morphine in females than males, probably due to the large amounts in the female uterus. Morphine (10–9 M) and morphine-6-glucuronide (10–9 M) stimulated the release of NO from Ascaris muscle tissue. Naloxone (10–7 M), and L-NAME (10–6 M) blocked (P < 0.005) morphine-stimulated NO release from A. suum muscle. CTOP (10–7 M) did not block morphine’s NO release. However, naloxone could not block M6G stimulated NO release by muscle tissue, whereas CTOP (10–7 M) blocked its release. These findings were in seeming contradiction to our inability to isolate a μ opiate receptor messenger RNA by RT-PCR using a human μ primer. This suggests that a novel μ opiate receptor was present and selective toward M6G.


Ascaris suum morphine nitric oxide HPLC mass spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allard, M., Geoffre, S., Legendre, P., Vincent, J. D., Simonnet, G. (1989) Characterization of rat spinal cord receptors to FLFQPQRFamide, a mammalian morphine modulating peptide: a binding study. Brain Res. 500, 169–176.CrossRefGoogle Scholar
  2. 2.
    Bargmann, C. I. (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033.CrossRefGoogle Scholar
  3. 3.
    Bowman, J. W., Friedman, A. R., Thompson, D. P., Maule, A. G., Alexander-Bowman, S. J., Geary, T. G. (2002) Structure-activity relationships of an inhibitory nematode FMRFamide-related peptide, SDPNFLRFamide (PF1), on Ascaris suum muscle. Int. J. Parasitol. 32, 1765–1771.CrossRefGoogle Scholar
  4. 4.
    Bowman, J. W., Winterrowd, C. A., Friedman, A. R., Thompson, D. P., Klein, R. D., Davis, J. P., Maule, A. G., Blair, K. L., Geary, T. G. (1995) Nitric oxide mediates the inhibitory effects of SDPNFLRFamide, a nematode FMRFamide-related neuropeptide, in Ascaris suum. J. Neurophysiology 74, 1880–1888.CrossRefGoogle Scholar
  5. 5.
    Duvaux-Miret, O., Dissous, C., Guatron, J. P., Pattou, E., Kordon, C., Capron, A. (1990) The helminth Schistosoma mansoni expresses a peptide similar to human beta-endorphin and possesses a POMC-related gene. New Biol. 2, 93–99.PubMedGoogle Scholar
  6. 6.
    Goumon, Y., Casares, F., Pryor, S., Ferguson, L., Brownwell, B., Cadet, P., Rialas, C. M., Welters, I., Sonetti, D., Stefano, G. B. (2000) Ascaris suum, an internal parasite, produces morphine. J. Immunol. 165, 339–343.CrossRefGoogle Scholar
  7. 7.
    Greenberg, M. J., Payza, K., Nachman, R. J., Holman, G. M., Price, D. A. (1988) Relationships between the FMRFamide-related peptides and other peptide families. Peptides 9 Suppl 1, 125–135.CrossRefGoogle Scholar
  8. 8.
    Kavaliers, M. (1990) Inhibitory influences of mammalian FMRFamide (Phe-Met-Arg-Phe-amide)-related peptides on nociception and morphine- and stress-induced analgesia in mice. Neurosci. Lett. 115, 307–312.CrossRefGoogle Scholar
  9. 9.
    Kavaliers, M., Hirst, M., Mathers, A. (1985) Inhibitory influences of FMRFamide on morphine- and deprivation-induced feeding. Neuroendocrinology 40, 533–535.CrossRefGoogle Scholar
  10. 10.
    Leung, M. K., Dissous, C., Capron, A., Woldegaber, H., Duvaux-Miret, O., Pryor, S. C., Stefano, G. B. (1995) Schistosoma mansoni: The presence and potential use of opiate-like substances. Exp. Parasit. 81, 208–215.CrossRefGoogle Scholar
  11. 11.
    Lu, W., Egerton, G. L., Bianco, A. E., Williams, S. A. (1998) Thioredoxin peroxidase from Onchocerca volvulus: a major hydrogen peroxide detoxifying enzyme in filarial parasites. Mol. Biochem. Parasitol. 91, 221–235.CrossRefGoogle Scholar
  12. 12.
    Lustigman, S., Brotman, B., Huima, T., Prince, A. M., McKerrow, J. H. (1992) Molecular cloning and characterization of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus. J. Biol.Chem. 267, 17339–17346.PubMedGoogle Scholar
  13. 13.
    Mantione, K., Zhu, W., Rialas, C., Casares, F., Franklin, A., Tonnesen, J., Stefano, G. B. (2002) Morphine-6-glucuronide stimulates nitric oxide release in mussel neural tissues: Evidence for a morphine-6-glucuronide opiate receptor subtype. Cell. & Mol. Life Sci. 59, 570–574.CrossRefGoogle Scholar
  14. 14.
    Maule, A. G., Bowman, J. W., Thompson, D. P., Marks, N. J., Friedman, A. R., Geary, T. G. (1996) FMRFamide-related peptides (FaRPs) in nematodes: occurrence and neuromuscular physiology. Parasitology 113 Suppl, S119–S135.Google Scholar
  15. 15.
    Maule, A. G., Geary, T. G., Bowman, J. W., Marks, N. J., Blair, K. L., Halton, D. W., Shaw, C., Thompson, D. P. (1995) Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from Ascaris suum. Invert. Neurosci. 1, 255–265.CrossRefGoogle Scholar
  16. 16.
    Pastrana, D. V., Raghavan, N., FitzGerald, P., Eisinger, S. W., Metz, C., Bucala, R., Schleimer, R. P., Bickel, C., Scott, A. L. (1998) Filarial nematode parasites secrete a homologue of the human cytokine macrophage migration inhibitory factor. Infect. Immun. 66, 5955–5963.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pryor, S. C., Elizee, R. (2000) Evidence of opiates and opioid neuropeptides and their immune effects in parasitic invertebrates representing three different phyla: Schistosoma mansoni, Theromyzon tessulatum, Trichinella spiralis. Acta Biol. Hung. 51, 331–341.PubMedGoogle Scholar
  18. 18.
    Salzet, M., Salzet-Raveillon, B., Cocquerelle, C., Verger-Bocquet, M., Pryor, S. C., Rialas, C. M., Laurent, V., Stefano, G. B. (1997) Leech immunocytes contain proopiomelanocortin: nitric oxide mediates hemolymph proopiomelanocortin processing. J. Immunol. 159, 5400–5411.PubMedGoogle Scholar
  19. 19.
    Salzet, M., Stefano, G. B. (1997) Invertebrate proenkephalin: Delta opioid binding sites in leech ganglia and immunocytes. Brain Res. 768, 232.CrossRefGoogle Scholar
  20. 20.
    Salzet, M., Stefano, G. B. (1997) Prodynorphin in invertebrates. Mol. Brain Res. 52, 46–52.CrossRefGoogle Scholar
  21. 21.
    Stefano, G. B., Cadet, P., Dokun, A., Scharrer, B. (1990) A neuroimmunoregulatory-like mechanism responding to electrical shock in the marine bivalve Mytilus edulis. Brain Behav. Immun. 4, 323–329.CrossRefGoogle Scholar
  22. 22.
    Stefano, G. B., Cadet, P., Zhu, W., Rialas, C. M., Mantione, K., Benz, D., Fuentes, R., Casares, F., Fricchione, G. L., Fulop, Z. I., Slingsby, B. T. (2002) The blueprint for stress can be found in invertebrates. Neuroendocrinology Letters 23, 85–93.PubMedGoogle Scholar
  23. 23.
    Stefano, G. B., Leung, M. K., Bilfinger, T. V., Scharrer, B. (1995) Effect of prolonged exposure to morphine on responsiveness of human and invertebrate immunocytes to stimulatory molecules. J. Neuroimmunol. 63, 175–181.CrossRefGoogle Scholar
  24. 24.
    Stefano, G. B., Salzet-Raveillon, B., Salzet, M. (1998) Mytilus edulis hemocytes contains pro-opiomelanocortin: LPS and morphine stimulate differential processing. Mol. Brain Res. 63, 340–350.CrossRefGoogle Scholar
  25. 25.
    Stefano, G. B., Salzet-Raveillon, B., Salzet, M. (1998) Mytilus edulis hemolymph contain prodynorphin. Immunol. Lett. 63, 33–39.CrossRefGoogle Scholar
  26. 26.
    Stretton, A. O., Cowden, C., Sithigorngul, P., Davis, R. E. (1991) Neuropeptides in the nematode Ascaris suum. Parasitology 102 Suppl, S107–S116.CrossRefGoogle Scholar
  27. 27.
    Tamashiro, W. K., Rao, M., Scott, A. L. (1987) Proteolytic cleavage of IgG and other protein substrates by Dirofilaria immitis microfilarial enzymes. J. Parasitol. 73, 149–154.CrossRefGoogle Scholar
  28. 28.
    Tang, J., Yang, H. Y., Costa, E. (1984) Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc. Natl. Acad. Sci. U.S.A. 81, 5002–5005.CrossRefGoogle Scholar
  29. 29.
    Yang, H. Y., Fratta, W., Majane, E. A., Costa, E. (1985) Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc. Natl. Acad. Sci. U.S.A. 82, 7757–7761.CrossRefGoogle Scholar
  30. 30.
    Yenbutr, P., Scott, A. L. (1995) Molecular cloning of a serine proteinase inhibitor from Brugia malayi. Infect. Immun. 63, 1745–1753.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhu, W., Baggerman, G., Goumon, Y., Casares, F., Brownawell, B., Stefano, G. B. (2001) Presence of morphine and morphine-6-glucuronide in the marine mollusk Mytilus edulis ganglia determined by GC/MS and Q-TOF-MS. Starvation increases opiate alkaloid levels. Brain Res. Mol. Brain Res. 88, 155–160.CrossRefGoogle Scholar
  32. 32.
    Zhu, W., Baggerman, G., Goumon, Y., Zenk, M. H., Stefano, G. B. (2001) Identification of morphine and morphine-6-glucuronide in the adrenal medullary chromaffin PC-12 cell line by nano electrospray ionization double quadrupole orthogonal acceleration time of flight mass spectrometry. Eur. J. of Mass. Spect. 7, 25–28.CrossRefGoogle Scholar
  33. 33.
    Zhu, W., Baggerman, G., Secor, W. E., Casares, F., Pryor, S. C., Fricchione, G. L., Ruiz-Tiben, E., Eberhard, M. L., Bimi, L., Stefano, G. B. (2002) Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids. Annals of Tropical Medicine and Parasitology 96, 309–316.CrossRefGoogle Scholar
  34. 34.
    Zhu, W., Bilfinger, T. V., Baggerman, G., Goumon, Y., Stefano, G. B. (2001) Presence of endogenous morphine and morphine 6 glucuronide in human heart tissue. International Journal of Molecular Medicine 7, 419–422.PubMedGoogle Scholar
  35. 35.
    Zhu, W., Pryor, S. C., Putnam, J. A., Cadet, P., Stefano, G. B. (2003) Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. J. Parasitol. (in press).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Old Westbury Neuroscience Research InstituteState University of New YorkNew YorkUSA

Personalised recommendations