Advertisement

Acta Biologica Hungarica

, Volume 55, Issue 1–4, pp 21–29 | Cite as

Separate Distribution of Deutocerebral Projection Neurons in the Mushroom Bodies of the Cricket Brain

  • Ina FrambachEmail author
  • F.-W. Schürmann
Article

Abstract

Deutocerebral projection neurones in the brain of the cricket (Gryllus bimaculatus) have been investigated by experimental dextran staining, viewed by light and electron microscopy. These neurones of two separate somata clusters innervate two separate primary glomerular neuropils of the deutocerebral segment, either the antennal lobe receiving only antennal nerve sensory input, or the glomerular lobe, receiving input from sensory neurones of lower segmental origin, including chemosensory fibres from mouth parts. Projection neurones of the antennal lobe only invade the anterior calyx of the mushroom body neuropil via the inner antenno glomerular tract, while glomerular relay neurones of the glomerular lobe innervate only the posterior calyx via the tritocerebral tract. All types of projection neurones give rise to presynaptic boutons, forming the central core of microglomeruli with patterned distribution. These projection neurons are cholinergic. The results are discussed in view of maintained segregated modal information, first processed in the separated primary deutocerebral neuropiles and further on in the second order input neuropils of the mushroom bodies. The large posterior calyces are proposed as a compartment for gustatory information.

Keywords

Mushroom bodies deutocerebral projection neurones dextran staining synapses Gryllus bimaculatus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anton, S., Homberg, U. (1999) Antennal lobe structure. In: Hansson, B. (ed.) Insect olfaction. Springer Verlag, Berlin, pp. 97–12CrossRefGoogle Scholar
  2. 2.
    Blaney, W. M. (1974) Electrophysiological responses of the terminal sensilla on the maxillary palp of Locusta migratoria (L.) to some electrolytes and non electrolytes. J. Exp. Biol. 60, 275–293.PubMedGoogle Scholar
  3. 3.
    Ernst, K.-D., Boeckh, J., Boeckh, V. (1977) A neuroanatomical study on the organization of the central antennal pathways in insects. Cell Tiss. Res. 176, 285–308.Google Scholar
  4. 4.
    Fiala, A., Spall, T., Diegelmann, S., Eisermann, B., Sachse, S., Devaud, J.-M., Buchner, E., Galizia, C. G. (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr. Biol. 12, 1877–1884.CrossRefGoogle Scholar
  5. 5.
    Galizia, C. G., Menzel, R. (2001) The role of glomeruli in the neural representation of odours: results from optical recording studies. J. Ins. Physiol. 47, 115–129.Google Scholar
  6. 6.
    Gronenberg, W. (1999) Modality-specific segregation of input to ant mushroom bodies. Brain Behav. Evol. 54, 85–95.CrossRefGoogle Scholar
  7. 7.
    Ignell, R., Anton, S., Hansson, B. S. (2000) The maxillary palp sensory pathways of Orthoptera. Arthropod Structure & Development 29, 295–305.CrossRefGoogle Scholar
  8. 8.
    Schildberger, K. (1984) Multimodal interneurons in the cricket brain: properties of extrinsic mushroom body cells. J. Comp. Physiol. (A) 154, 71–79.CrossRefGoogle Scholar
  9. 9.
    Schürmann, F.-W. (1973) Über die Struktur der Pilzkörper des Insektenhirns. III. Die Anatomie der Nervenfasern in den Corpora pedunculata bei Acheta domesticus L. Z. Zellforsch. 145, 247–2Google Scholar
  10. 10.
    Schürmann, F.-W. (1987) The architecture of the mushroom bodies and related neuropils in the insect brain. In: Gupta, A. P. (ed.) Arthropod Brain. John Wiley, New York, pp. 231–264.Google Scholar
  11. 11.
    Staudacher, E., Schildberger, K. (1999/2000): A newly described neuropile in the deutocerebrum of the cricket: Antennal afferents and descending interneurons. Zoology 102, 212–226.Google Scholar
  12. 12.
    Strausfeld, N. J. (2002) Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes. J. Comp. Neurol. 450, 4–33.CrossRefGoogle Scholar
  13. 13.
    Strausfeld, N. J., Li, Y. S. (1999) Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. J. Comp. Neurol. 409, 603–625.CrossRefGoogle Scholar
  14. 14.
    Stocker, R. F., Schorderet, M. (1981) Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tiss. Res. 216, 513–523.Google Scholar
  15. 15.
    Weiss, M. J. (1981) Structural patterns in the corpora pedunculata of orthoptera: a reduced silver analysis. J. Comp. Neurol. 203, 515–553.CrossRefGoogle Scholar
  16. 16.
    Yasuyama, K., Meinertzhagen, I. A., Schürmann, F.-W. (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J. Comp. Neurol. 445, 211–226.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut für ZoologieAnthropologie und Entwicklungsbiologie der Universität GöttingenGöttingenGermany

Personalised recommendations