Advertisement

Acta Biologica Hungarica

, Volume 55, Issue 1–4, pp 315–321 | Cite as

Serotonergic and Dopaminergic Influence of the Duration of Embryogenesis and Intracapsular Locomotion of Lymnaea Stagnalis L.

  • Adrienn Filla
  • L. HiripiEmail author
  • K. Elekes
Article

Abstract

The role of the dopaminergic and serotonergic system was studied during the embryonic development of the pond snail Lymnaea stagnalis, with special attention to the effect of dopamine and serotonin as well as their agonists and antagonists on the rotation of the veliger larvae, and to the effect of precursors and inhibitors of the synthetizing enzymes on the duration of the embryonic life. Serotonin, D-lysergic acid diethylamide and N,N-dimethyltryptamine increased at a concentration of 1 M the rotation by 50%, 90% and 87% respectively, and among them D-Lysergic acid diethylamide was found to be the most potent agonist. Other serotonergic agonists and antagonists enhanced the frequency of the rotation (from 165% to 355%) at higher threshold concentrations in the following rank order: methysergid > tryptamine > 2,5-dimethoxy-4-iodoamphetamine > 5-carboxyamidotryptamine > bromo-lysergic acid diethylamide > 7-methyltryptamine. Application of 1-(2-methoxyphenyl) piperazine decreased the rotation by 76%. The reuptake inhibitor desipramine completely blocked the rotation and killed the embryos. Dopaminergic agonists accelerated the rotation by 62% to 233%, and their effect was ranged as follows: dopamine > apomorphine > m-tyramine p-tyramine. Chlorpromazine at 100 M concentration killed the embryos. At a concentration of 100 g/ml, tyrosine, the precursor of DA, slowed down the embryonic development by increasing the duration of the embryonic life from 8 to 10 days. Decarboxylase inhibitors, methyl-3,4-dihydroxyphenyl-alanine (25 g/ml) and m-hydroxybenzylhydrazin (5 g/ml), killed 50% of the embryos, meanwhile the rest hatched ten days later, compared to the control animals. The development was partially blocked by the serotonin precusor L-tryptophane (50 g/ml). Trytophan hydroxylase blocker, p-chlorphenylalanine (50 g/ml) resulted in a distortion of the body pattern of the embryos, and prevented the hatching of most (95%) of the animals.

Keywords

Serotonin dopamine embryogenesis locomotion Lymnaea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References 37

  1. 1.
    Barlow, L. A., Truman, J. W. (1992) Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abolone. Haliotis rufescens. J. Neurobiol. 23, 829–844.CrossRefGoogle Scholar
  2. 2.
    Coon, S., Bonar, D. (1986) Norepinephrine and dopamine content of larvae and spat of the Pacific oyster Crassostrea gigas. Biol. Bull. 171, 212–220.CrossRefGoogle Scholar
  3. 3.
    Coon, S. L., Bonar, D. B., Wiener, R. M. (1985) Induction of settling and metamorphosis of the Pacific oyster, Crassostrea gigas (Thunberg) by L-DOPA and catecholamines. I. Exp. Mar. Biol. Ecol. 94, 211–221.CrossRefGoogle Scholar
  4. 4.
    Croll, R. P., Chiasson, B. J. (1989) Postembryonic development of serotonin-like immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J. Comp. Neurol. 280, 122–142.CrossRefGoogle Scholar
  5. 5.
    De Vlieger, T. A., Lodder, J. C., Stoff, J. C., Werkman, T. R. (1986) Dopamine receptor stimulation induces a potassium dependent hyperpolarizing response in growth hormone producing neuroendocrine cells of the gastropod molluscs Lymnaea stagnalis. Comp. Biochem. Physiol. 83C, 429–433.Google Scholar
  6. 6.
    Diefenbach, T. J., Koehncke, N. K., Goldberg, J. I. (1991) Characterization and development of rotational behavior in Helisoma embryos: role of endogenous serotonin. J. Neurobiol. 22, 922–934.CrossRefGoogle Scholar
  7. 7.
    Elekes, K., Kemenes, G., Hiripi, L., Geffard, M., Benjamin, P. R. (1991) Dopamine-immunoreactive neurons in the central nervous system of the pond snail Lymnaea stagnalis J. Comp. Neurol. 307, 214–224.CrossRefGoogle Scholar
  8. 8.
    Elekes, K., Voronezhskaya, E. E., Hiripi, L., Eckert, M., Rapus, J. (1996) Octopamine in the developing nervous system of the pond snail, Lymnaea stagnalis. Acta Biol. Hung. 47, 73–87.PubMedGoogle Scholar
  9. 9.
    Gerhardt, C. C., Leysen, J. E., Planta, R. J., Vreugdenhil, E., Heerikhuizen, H. V. (1996) Functional characterisation of a 5HT2 receptor cDNA cloned from Lymnaea stagnalis. Eur. J. Pharmacol. 311, 249–258.CrossRefGoogle Scholar
  10. 10.
    Gerschenfeld, H. M., Paupardin-Tritsch, D. (1974) Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine. J. Physiol. 243, 427–456CrossRefGoogle Scholar
  11. 11.
    Goldberg, J., Kater, S. B. (1989) Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system. Dev. Biol. 131, 483–495.CrossRefGoogle Scholar
  12. 12.
    Goldberg, J. I., Koehncke, N. K., Christopher, K. J., Neumann, C., Diefenbach, T. J. (1994) Pharmacological characterization of a serotonin receptor involved in an early embryonic behavior of Helisoma trivolvis. J. Neurobiol. 25, 1545–1557.CrossRefGoogle Scholar
  13. 13.
    Hetherington, M. S., McKenzie, J. D., Dean, H. G., Winlow, W. (1994) A quantitative analysis of the biogenic amines in the central ganglia of the pond snail, Lymnaea stagnalis (L.). Comp. Biochem. Physiol. 107C, 83–93.Google Scholar
  14. 14.
    Hiripi, L., Neuhoff, V., Osborne, N. N. (1976) The uptake of serotonin and catecholamines by the isolated auricle of the snail (Helix pomatia). J. Neurochem. 26, 335–343.CrossRefGoogle Scholar
  15. 15.
    Kemenes, G., Elekes, K., Hiripi, L., Benjamin, P. R. (1989) A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail, Lymnaea. J. Neurocytology 18, 193–208.CrossRefGoogle Scholar
  16. 16.
    Kemenes, G., Benjamin, P. R. (1989) Appetitive learning in snails shows characteristics of conditioning in vertebrates. Brain Res. 489, 163–166.CrossRefGoogle Scholar
  17. 17.
    Kemenes, G., Hiripi, L., Benjamin, P. R. (1990) Behavioural and biochemical changes in the feeding system of Lymnaea induced by the dopamine and serotonin neurotoxins 6-hydroxydopamine and 5,6-dihydroxytryptamine. Phil. Trans. R. Soc. Lon. B 329, 243–255.CrossRefGoogle Scholar
  18. 18.
    Kyriakides, M., McCrohan, C. R. (1989) Effect of putative neuromodulators on rhytmic buccal motor output in Lymnaea stagnalis. J. Neurobiol. 20, 635–650.CrossRefGoogle Scholar
  19. 19.
    Marois, R., Croll, R. P. (1992) Development of serotoninlike immunoreactivity in the embryonic nervous system of the snail Lymnaea stagnalis. J. Comp. Neurology. 322, 255–265.CrossRefGoogle Scholar
  20. 20.
    Marois, R., Carew, T. J. (1997) Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol. Bull. 192, 388–389.CrossRefGoogle Scholar
  21. 21.
    Marois, R., Carew, T. J. (1997) Ontogeny of serotonergic neurons in Aplysia californica. J. Comp. Neurol. 386, 477–490.CrossRefGoogle Scholar
  22. 22.
    McCaman, M. W., Ono, J. K., McCaman, R. E. (1979) Dopamine measurements in molluscan ganglia and neurones using a new, sensitive technique. J. Neurochem. 32, 1111–1113.CrossRefGoogle Scholar
  23. 23.
    McCaman, M. W., Ono, J. K., McCaman, R. E. (1984) 5-hydroxytryptamine measurements in molluscan ganglia and neurones using a modified radioenzymatic assay. J. Neurochem. 43, 91–99.CrossRefGoogle Scholar
  24. 24.
    Nemcsók, J., Markova, L. N., Hiripi, L. (1975) Monoamines in the central nervous system of Lymnaea stagnalis L. (Gastropoda) and effect of pharmacons on the monoamine level. Annal. Biol. Tihany 42, 81–97.Google Scholar
  25. 25.
    Osborne, N. N., Hiripi, L., Neuhoff, V. (1975) The in vitro uptake of biogenic amines by snail (Helix pomatia) nervous tissue. Biochem. Pharmac. 24, 2141–2148.CrossRefGoogle Scholar
  26. 26.
    Pires, A., Coon, S. L., Hadfield, M. G. (1997) Catecholamines and dihydroxyphenylalanine in metamorphosing larvae of the nudibranch Phestilla sibogae Berg (Gastropoda: Opisthobranchia). J. Comp. Physiol. 181A, 187–194.CrossRefGoogle Scholar
  27. 27.
    Spencer, G. E., Lukowiak, K., Syed, N. I. (1996) Dopamine regulation of neurite outgrowth from identified Lymnaea neurons in culture. Cell Mol. Neurobiol. 16, 577–589.CrossRefGoogle Scholar
  28. 28.
    Syed, N. I., Lukowiak, K., Bulloch, A. G. M. (1990) In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science 250, 282–285.CrossRefGoogle Scholar
  29. 29.
    Vehovszky, A., Walker, R. J. (1991) An analysis of the 5-hydroxytryptamine (serotonin) receptor subtypes of central neurones of Helix aspersa. Comp. Biochem. Physiol. 100C, 463–476.Google Scholar
  30. 30.
    Voronezhskaya, E. E., Hiripi, L., Elekes, K., Croll, R. P. (1999) Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: I. Embryonic of dopamine-containing neurons and dopamine-dependent behaviors. J. Comp. Neurology 404, 285–296.CrossRefGoogle Scholar
  31. 31.
    Voronezhskaya, E. E., Elekes, K. (1993) Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1, 371–383.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Experimental Zoology, Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary

Personalised recommendations