Advertisement

Acta Biologica Hungarica

, Volume 55, Issue 1–4, pp 13–19 | Cite as

Properties of Descending Dorsal Unpaired Median (DUM) Neurons of the Locust Suboesophageal Ganglion

  • P. BräunigEmail author
  • M. Burrows
  • O. T. Morris
Article

Abstract

A group of six dorsal unpaired median (DUM) neurons of the suboesophageal ganglion (SOG) of locusts was studied with neuroanatomical and electrophysiological techniques. The neurons are located posteriorly in the SOG and have axons that descend into the ganglia of the ventral nerve cord, some as far as the terminal abdominal ganglion. Within thoracic ganglia the neurons have profuse dendritic ramifications in many neuropiles, including ventral sensory neuropiles. Based on their projection patterns three different morphological types of neurons can be distinguished. These neurons receive excitatory inputs through sensory pathways that ascend from the thoracic ganglia and are activated by limb movements. They may be involved in the modulation of synaptic transmission in thoracic ganglia.

Keywords

Neuromodulation insect DUM neuron octopamine biogenic amine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bräunig, P. (1990) The morphology of suboesophageal ganglion cells innervating the nervus corporis cardiaci III of the locust. Cell Tissue Res. 260, 95–108.CrossRefGoogle Scholar
  2. 2.
    Bräunig, P. (1991) Suboesophageal DUM neurones innervate the principal neuropiles of the locust brain. Philos. Trans. Roy. Soc. London B 322, 221–240.Google Scholar
  3. 3.
    Bräunig, P. (1997) The peripheral branching pattern of identified dorsal unpaired median (DUM) neurones of the locust. Cell Tissue Res. 290, 641–654.CrossRefGoogle Scholar
  4. 4.
    Bräunig, P., Eder, M. (1998) Locust dorsal unpaired median (DUM) neurones directly innervate and modulate hindleg proprioceptors. J. Exp. Biol. 201, 3333–3338.PubMedGoogle Scholar
  5. 5.
    Bräunig, P., Pflüger, H.-J. (2001) The unpaired median neurons of insects. Adv. Insect. Physiol. 28, 185–266.CrossRefGoogle Scholar
  6. 6.
    Bräunig, P., Stevenson, P. A., Evans, P. D. (1994) A locust octopamine immunoreactive dorsal unpaired median neurone forming terminal networks on sympathetic nerves. J. Exp. Biol. 192, 225–238.Google Scholar
  7. 7.
    Burrows, M., Watson, A. H. D., Brunn, D. E. (1989) Physiological and ultrastructural characterization of a central synaptic connection between identified motor neurons in the locust. Eur. J. Neurosci. 1, 111–126.CrossRefGoogle Scholar
  8. 8.
    Campbell, H. R., Thompson, K. J., Siegler, M. V. S. (1995) Neurons of the median neuroblast lineage of the grasshopper: A population study of the efferent DUM neurons. J. Comp. Neurol. 358, 541–551.CrossRefGoogle Scholar
  9. 9.
    Kien, J., Fletcher, W. A., Altman, J. S., Ramirez, J. M., Roth, U. (1990) Organisation of intersegmental interneurons in the suboesophageal ganglion of Schistocerca gregaria (Forskal) and Locusta migratoria migratorioides (Reiche & Fairmaire) (Acrididae, Orthoptera). Int. J. Insect Morphol. Embryol. 19, 35–30.CrossRefGoogle Scholar
  10. 10.
    Parker, D. (1996) Octopaminergic modulation of locust motor neurones. J. Comp. Physiol. [A] 178, 243–252.CrossRefGoogle Scholar
  11. 11.
    Sombati, S., Hoyle, G. (1984) Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulator octopamine. J. Neurobiol. 15, 481–506.CrossRefGoogle Scholar
  12. 12.
    Stevenson, P. A., Kutsch, W. (1988) Demonstration of functional connectivity of the flight motor system in all stages of the locust. J. Comp. Physiol. [A] 162, 247–259.CrossRefGoogle Scholar
  13. 13.
    Stevenson, P. A., Spörhase-Eichmann, U. (1995) Localization of octopaminergic neurones in insects. Comp. Biochem. Physiol. [A] 110, 203–215.CrossRefGoogle Scholar
  14. 14.
    Stevenson, P. A., Pflüger, H.-J., Eckert, M., Rapus, J. (1992) Octopamine immunoreactive cell populations in the locust thoracic-abdominal nervous system. J. Comp. Neurol. 315, 382–397.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut Biologie IIRWTH AachenAachenGermany
  2. 2.Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations