Advertisement

Acta Biologica Hungarica

, Volume 54, Issue 3–4, pp 323–334 | Cite as

Identification and Induction of hsp70 Gene by Heat Shock and Cadmium Exposure in Carp

  • K. Said Ali
  • L. Dorgai
  • Anett Gazdag
  • Magdolna Ábrahám
  • Edit HermeszEmail author
Article

Abstract

A member of the multi-gene family, encoding 70 kD stress proteins, was identified from the common carp (Cyprinus carpio). Homologies, observed at both nucleic acid and amino acid levels, and also the intronless structure of this gene, strongly suggest that it corresponds to a heat-inducible hsp70 gene in carp. Gene-specific primers were selected and used in RT-PCR reactions to measure the basal hsp70 mRNA levels and to follow the inducer-specific expression of this gene in different tissues during in vivo studies. Carp hsp70 mRNA is not detectable in the brain and muscle, and its concentration is around the limit of detection in the kidney and liver of unstressed animals. The expression of hsp70 is induced by elevated temperature and it responds to Cd treatment in a tissue and time-dependent manner.

Keywords

Cadmium fish heat shock hsp70 expression liver muscle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Airaksinen, S., Rabergh, C. M., Sistonen, L., Nikinmaa, M. (1998) Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells. J. Exp. Biol. 201, 2543–2551.PubMedGoogle Scholar
  2. 2.
    Arai, A., Naruse, K., Mitani, H., Shima, A. (1995) Cloning and characterization of cDNAs for 70-kDa heat-shock proteins (Hsp70) from two fish species of the genus Oryzias. Jpn. J. Genet. 70, 423–133.CrossRefGoogle Scholar
  3. 3.
    Bannai, S., Sato, H., Taketani, S. (1991) Enhancement of glutathione levels in mouse peritoneal macrophages by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochem. Biophys. Acta 1092, 175–179.CrossRefGoogle Scholar
  4. 4.
    Beyersmann, D., Hechtenberg, S. (1997) Cadmium, gene regulation, and cellular signaling in mam-malian cells. Toxicol. Appl. Pharmacol. 144, 247–261.CrossRefGoogle Scholar
  5. 5.
    Felsenstein, J. (1996) Inferring phylogeny from protein sequences by parsymony, distance and like-lihood methods. Methods Enzymol. 266, 368–382.CrossRefGoogle Scholar
  6. 6.
    Gupta, R. S., Golding, G. B. (1993) Evolution of HSP70 gene and its implications regarding rela-tionships between archaebacteria, eubacteria and eukaryotes. J. Mol. Evol. 37, 573–582.CrossRefGoogle Scholar
  7. 7.
    Iwama, G. K., Thomas, P. T., Forsyth, R. B., Vrjayan, M. M. (1998) Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries 8, 35–56.CrossRefGoogle Scholar
  8. 8.
    Kapoor, M., Curie, C. A., Runham, C. (1995) The hsp70 gene family of Neurospora crassa: cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member. J. Bacteriol. 177, 212–221.CrossRefGoogle Scholar
  9. 9.
    Kiang, J. G., Tsokos, G. C. (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80, 183–201.CrossRefGoogle Scholar
  10. 10.
    Kothary, R. K., Jones, D., Candido, E. P. (1984) 70-Kilodalton heat shock polypeptides from rainbow trout: characterization of cDNA sequences. Mol. Cell. Biol. 4, 1785–1791.CrossRefGoogle Scholar
  11. 11.
    Krone, P. H., Lele, Z., Sass, J. B. (1997) Heat shock genes and the heat shock response in zebrafish embryos. Biochem. Cell. Biol. 75, 487–197.CrossRefGoogle Scholar
  12. 12.
    Lele, Z., Engel, S., Krone, P. H. (1997) hsp47 and hsp70 gene expression is differentially regulated in a. stress- and tissue-specific manner in zebrafish embryos. Dev. Genet. 121, 123–133.CrossRefGoogle Scholar
  13. 13.
    Li, W., Zhao, Y., Chou, I-N. (1993) Alterations in cytoskeletal protein sulfhydryls and cellular glu-tathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 65–79.CrossRefGoogle Scholar
  14. 14.
    Lim, E. H., Brenner, S. (1999) Short-range linkage relationships, genomic organisation and sequence comparisons of a. cluster of five HSP70 genes in Fugu rubripes. Cell. Mol. Life Sci. 55, 658–667.CrossRefGoogle Scholar
  15. 15.
    Lindquist, S. (1986) The heat shock response. Annu. Rev. Biochem. 55, 1151–1191.CrossRefGoogle Scholar
  16. 16.
    Miller, S. A., Dykes, D. D., Polesky, H. F. (1988) A. simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.Google Scholar
  17. 17.
    Misra, S., Zafarullah, M., Price-Haughey, J., Gedamu, L. (1989) Analysis of stress-induced gene expression in fish cell lines exposed to heavy meals and heat shock. Biochim. Biophys. Acta 1007, 325–333.CrossRefGoogle Scholar
  18. 18.
    Molina, A., Biemar, F., Muller, F., Iyengar, A., Prunet, P., Maclean, N., Martial, J. A., Muller, M. (2000) Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Lett. 474, 5–10.CrossRefGoogle Scholar
  19. 19.
    Ovelgonne, J. FL, Souren, J. E., Wiegant, F. A., Van Wijk, R. (1995) Relationship between cadmium-induced expression of heat shock genes, inhibition of protein synthesis and cell death. Toxicology 99, 19–30.CrossRefGoogle Scholar
  20. 20.
    Page, R. D. M. (1996) TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biological Sciences 12, 357–358.Google Scholar
  21. 21.
    Reinsing, S. A., Maier, U. G. (1994) Phylogenetic analysis of the stress-70 protein family. J. Mol. Evol. 39, 80–86.Google Scholar
  22. 22.
    Sanders, B. M. (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol. 23, 49–75.CrossRefGoogle Scholar
  23. 23.
    Stefani, R. M., Gomes, S. L. (1995) A. unique intron-containing hsp70 gene induced by heat shock and during sporulation in the aquatic fungus Blastocladiella emersonii. Gene 152, 19–26.CrossRefGoogle Scholar
  24. 24.
    Thompson, J. D., Higgins, D. G., Gibson, T. J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–1680.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2003

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • K. Said Ali
    • 1
  • L. Dorgai
    • 2
  • Anett Gazdag
    • 1
  • Magdolna Ábrahám
    • 1
  • Edit Hermesz
    • 1
    Email author
  1. 1.Department of Biochemistry, Faculty of SciencesUniversity of SzegedSzegedHungary
  2. 2.Bay Zoltan Foundation for Applied ResearchInstitute for BiotechnologySzegedHungary

Personalised recommendations