Acta Biologica Hungarica

, Volume 54, Issue 1, pp 105–112 | Cite as

Catalase Activity in Arctic Microfungi Grown at Different Temperatures

  • J. FiedurekEmail author
  • Anna Gromada
  • Anna Słomka
  • Teresa Korniłowicz-Kowalska
  • Ewa Kurek
  • J. Melke


The total of 98 strains of moulds were isolated from soils collected in arctic tundra (Spitzbergen). Among these strains Penicillium cyclopium 1, the most effective for production of catalase, was selected by the method of test-tube microculture. The time course of growth and catalase production by this strain showed the intracellular activity of this enzyme to be about 3-fold higher than its extracellular level. Some properties of crude catalase preparation, isolated from postculture liquids by lyophilization, were also examined. Catalase activity showed its maximum at 15 °C, indicating adaptation of the enzyme to lower temperatures of the arctic environment.


Catalase psychrotroph screening arctic fungi Penicillium cyclopium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the research program No.I/BiNoZ/statut/.


  1. 1.
    Akertek, D., Tarhan, L. (1995) Characteristic of immobilized catalases and their application in pasterization of milk with H2O2. Appl. Biochem. Biotechnol. 50, 291–303.CrossRefGoogle Scholar
  2. 2.
    Bradner, J. R., Gillings, M., Nevalainen, K. M. H. (1999) Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media. World J. Microbiol. Biotechnol. 15, 143–145.CrossRefGoogle Scholar
  3. 3.
    Caridis, K. A., Christakopoulos, P., Macris, B. J. (1991) Simultaneous production of glucose oxidase and catalase by Alternaria alternata. Appl. Microbiol. Biotechnol. 34, 794–797.CrossRefGoogle Scholar
  4. 4.
    Domsch, K. H., Gamsch, W., Anderson, T. H. (1980) Compendium of Soil Fungi. Vol. 1, Academic Press, London.Google Scholar
  5. 5.
    Feller, G., Thiry, M., Arpigny, J. L., Mergeay, M., Gerday, C. (1989) Lipases from psychrotrophic antarctic bacteria. FEMS Microbiol. Lett. 66, 239–244.CrossRefGoogle Scholar
  6. 6.
    Fiedurek, J., Gromada, A. (1997) Selection of biochemical mutants of Aspergillus niger with enhanced catalase production. Appl. Microbiol. Biotechnol. 47, 313–316.CrossRefGoogle Scholar
  7. 7.
    Fiedurek, J., Gromada, A. (2000) Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture. J. Appl. Microbiol. 89, 85–89.CrossRefGoogle Scholar
  8. 8.
    Fraaije, M. W., Roubroeks, H. P., Hagen, W. R., Vanberkel, W. J. H. (1996) Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. Europ. J. Biochem. 235, 192–198.CrossRefGoogle Scholar
  9. 9.
    Frost, M. G., Moss, D. A. (1987) Production of enzymes by fermentations. In: Rehm, H. J., Reed, G. (eds), Biotechnology VCH Verlagsgesellschaft, Weinheim, Vol. 7a, pp. 108–110.Google Scholar
  10. 10.
    Horikoshi, K. (1995) Discovering novel bacteria, with an eye to biotechnological applications. Curr. Opin. Biotechnol. 6, 292–297.CrossRefGoogle Scholar
  11. 11.
    Margesin, R., Schinner, F. (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33, 1–14.CrossRefGoogle Scholar
  12. 12.
    Nishikawa, Y., Kawata, Y., Nagai, J. (1993) Effect of triton on catalase production by Aspergillus terreus IFO6123. J. Ferment. Bioeng. 76, 235–236.CrossRefGoogle Scholar
  13. 13.
    Norton, S., Vuillemard, X. (1994) Food bioconversion and metabolite production using immobilized cell technology. Crit. Rev. Microbiol. 14, 193–224.Google Scholar
  14. 14.
    Onions, A. H. S., Brady, B. L. (1987) Taxonomy of Penicillium and Acremonium. In: Atkinson, T., Sherwood, R. F. (eds) Biotechnology Handbooks. Plenum Press New York.Google Scholar
  15. 15.
    Onofri, S., Tosi, S., Persiani, A. M., Maggi, O., Riess, S., Zucconi, L. (1992) Mycological Researches in Victoria Land Terrestial Ecosystems. Proceedings of the 2nd Meeting on Antarctic Biology. Padova, Italy, pp. 19–32.Google Scholar
  16. 16.
    Petruccioli, M., Fenice, M., Piccioni, P. (1993) Distribution and topology of glucose oxidase activity in the genus Penicillium. Lett. Appl. Microbiol. 17, 285–288.CrossRefGoogle Scholar
  17. 17.
    Potier, P., Drevet, P., Gounot, A. M., Hipkiss, A. (1990) Temperature-dependent changes in proteolytic activities and protein composition in the psychrotrophic bacterium Arthrobacter globiformis S 55. J. Gen. Microbiol. 136, 283–291.CrossRefGoogle Scholar
  18. 18.
    Scandalios, J. G. (1992) Regulation of the antioxidant defence genes Cat and Sod of maize. In: Scandalios, J. G. (ed.), Molecular Biology of Free Radical Scavenging Systems. Cold Spring Harbor Laboratory Press, New York, pp. 117–152.Google Scholar
  19. 19.
    Schacterle, G. R., Pollack, R. L. (1973) A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 51, 654–655.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2003

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. Fiedurek
    • 1
    Email author
  • Anna Gromada
    • 1
  • Anna Słomka
    • 2
  • Teresa Korniłowicz-Kowalska
    • 3
  • Ewa Kurek
    • 2
  • J. Melke
    • 4
  1. 1.Department of Industrial MicrobiologyMaria Curie-Skłodowska Univ.LublinPoland
  2. 2.Department of Environmental MicrobiologyMaria Curie-Skłodowska Univ.LublinPoland
  3. 3.Department of Agricultural MicrobiologyAgricultural UniversityLublinPoland
  4. 4.Department of Soil ScienceMaria Curie-Skłodowska Univ.LublinPoland

Personalised recommendations