Acta Biologica Hungarica

, Volume 54, Issue 1, pp 1–14 | Cite as

The Biology of the Post-Genomic ERA: The Proteomics

  • A. Mádi
  • Tünde Pusztahelyi
  • Mária Punyiczki
  • L. FésüsEmail author
Open Access


The complete identification of coding sequences in a number of species has led to announce the beginning of the post-genomic era, new tools have become available to study complex phenomena in biological systems. Rapid advances in genomic sequencing and bioinformatics have established the field of genomics to investigate thousands of genes’ activity through mRNA display. However, recent studies have demonstrated a lack of correlation between the transcriptional profiles and the actual protein levels in cells, so investigation of the expressed part of the genome is also required to link genomic data to biological function. It is possible that evolutional development occurred by increasing complexity of regulation processes at the level of RNA and protein molecules instead of simple increase in gene number, so investigation of proteins and protein complexes became important fields of our post-genomic era. Highresolution two-dimensional gels combined with sensitive mass spectrometry can reveal virtually all proteins present in cells opening new insights into functions of cells, tissues and whole organisms.


Post-genomic era proteomics Caenorhabditis elegans 



two-dimensional gel-electrophoresis


mass spectrometry


immobilized pH gradient


sodium dodecyl sulphate


polyacrylamide gel-electrophoresis


trichlororacetic acid


Coomassie Brillant Blue


charge-coupled device


matrix-assisted laser desorption ionization-time of flight


electrospray ionization


programmed cell death


disease-specific protein


laser capture microdissection


surface plasmon resonance-biomolecular interaction analysis



This work was supported by OTKA F030338.


  1. 1.
    Abu Kwaik, Y., Eisenstein, B. I., Engleberg, N. C. (1993) Phenotypic modulation by Legionella pneumophila upon infection of macrophages. Infect. Immun. 61, 1320–1329.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Alaiya, A. A., Franzen, B., Auer, G., Linder, S. (2000) Cancer proteomics: From identification of novel markers to creation of artificial learning models for tumor classification. Electrophoresis 21, 12–1217.Google Scholar
  3. 3.
    Alaiya, A. A., Franzen, B., Fujioka, K., Moberger, B., Schedvins, K., Silversard, C., Linder, S., Auer, G. (1997) Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors. Int. J. Cancer 73, 687–689.Google Scholar
  4. 4.
    Alba, F., Bermudez, A., Bartolome, S. J. (1996) Detection of five nanograms of protein by two-minute nile red staining of unfixed SDS gels. BioTechniques 21, 625–626.PubMedGoogle Scholar
  5. 5.
    Anderson, N. G., Anderson, N. L. (1978) Analytical techniques for cell fractions XXI. Two-dimensional analysis of serum and tissue proteins: Multiple isoelectric focusing. Anal. Biochem. 85, 331–340.PubMedGoogle Scholar
  6. 6.
    Anderson, N. L., Hickman, B. J. (1979) Analytical techniques for cell fractions XXIV. Ioselectric point standards for two-dimensional electrophoresis. Anal. Biochem. 93, 312–320.PubMedGoogle Scholar
  7. 7.
    Appel, R. D., Hochstrasser, D. F. (1999) Computer analysis of 2-D images. In: Link, A. J. (ed.), 2-D Proteome Analysis Protocols. Humana Press, Totowa, pp. 363–382.Google Scholar
  8. 8.
    Appel, R. D., Bairoch, A., Hochstrasser, D. F. (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy www server. Trends Biochem. Sci. 19, 258–260.PubMedGoogle Scholar
  9. 9.
    Appel, R. D., Hochstrasser, D. F., Funk, M., Vargas, J. R., Pellegrini, C., Muller, A. F., Scherrer, J. R. (1991) The MELANIE project: from a biopsy to automatic protein map interpretation by computer. Electrophoresis 12, 722–735.PubMedGoogle Scholar
  10. 10.
    Appel, R. D., Palagi, P. M., Walther, D., Vargas, J. R., Sanchez, J. C., Ravier, F., Pasquali, C., Hochstrasser, D. F. (1997) Melanie II-a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface. Electrophoresis 18, 2724–2734.PubMedGoogle Scholar
  11. 11.
    Baker, C. S., Corbett, J. M., May, A. J., Yacoub, M. H., Dunn, M. J. (1992) A human myocardial two-dimensional electrophoresis database: protein characterisation by microsequencing and immunoblot-ting. Electrophoresis 13, 723–726.PubMedGoogle Scholar
  12. 12.
    Banks, R. E., Dunn, M. J., Forbes, M. A., Stanley, A., Pappin, D., Naven, T., Gough, M., Harnden, P., Selby, P. (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis-preliminary findings. Electrophoresis 20, 689–700.PubMedGoogle Scholar
  13. 13.
    Berggren, K., Steinberg, T. H., Lauber, W. M., Carrol, J. A., Lopez, M. F., Chernokalskaya, E., Zieske, L., Diwu, Z., Haugland, R. P., Patton, W. F. (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal. Biochem. 276, 129–143.Google Scholar
  14. 14.
    Bienvenut, W., Sanchez, J. C., Karmine, A., Rouge, V., Rose, K., Binz, P. A., Hochstrasser, D. F. (1999) Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal. Chem. 71, 4800–4807.PubMedGoogle Scholar
  15. 15.
    Bini, L., Heid, H., Liberatori, S., Geirer, G., Pallini, V., Zwilling, R. (1997) Two-dimensional gel-electrophoresis of Caenorhabditis elegans homogenates and identification of protein spots by micro-sequencing. Electrophoresis 18, 557–562.PubMedGoogle Scholar
  16. 16.
    Binz, P. A., Muller, M., Walther, D., Bienvenut, W., Gras, R., Hoogland, C., Bouchet, G., Gasteiger, E., Fabbretti, R., Gay, S., Palagi, P., Wilkins, M. R., Rouge, V., Tonella, L., Paesano, S., Rosselat, G., Karmine, A., Bairoch, A., Sanchez, J. C., Appel, R. D., Hochstrasser, D. F. (1999) A molecular scanner to automate proteomic research and to display proteome images. Anal. Chem. 71, 4981–4988.PubMedGoogle Scholar
  17. 17.
    Bonner, R. F., Emmert-Buck, M. R., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., Liotta, L. A. (1997) Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483.PubMedGoogle Scholar
  18. 18.
    Boucherie, H., Dujardin, G., Kermorgant, M., Monribot, C., Slonimski, P., Perrot, M. (1995) Two-dimensional protein map of Saccharomyces cerevisiae: construction of a gene-protein index. Yeast 11, 601–613.PubMedGoogle Scholar
  19. 19.
    Carter, P. E., Abadi, F. J., Yakubu, D. E., Pennington, T. H. (1994) Molecular characterization of rifampin-resistant Neisseria meningitidis. Antimicrob. Agents Chemother. 38, 1256–1261.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Cash, P. (2000) Proteomics in medical microbiology. Electrophoresis 21, 1187–1201.PubMedGoogle Scholar
  21. 21.
    Cash, P., Argo, E., Langford, P. R., Kroll, J. S. (1997) Development of a Haemophilus two-dimensional protein database. Electrophoresis 18, 1472–1482.PubMedGoogle Scholar
  22. 22.
    Celis, J. (ed.) (1998) Cell Biology: A Laboratory Handbook, 2nd edition, Academic Press, San Diego, CA.Google Scholar
  23. 23.
    Celis, J. E., Ostergaard, M., Rasmussen, H. H., Gromov, P., Gromova, I., Varmark, H., Palsdottir, H., Magnusson, N., Andersen, I., Basse, B., Lauridsen, J. B., Ratz, G., Wolf, H., Orntoft, T. F., Celis, P., Celis, A. (1999) A comprehensive protein resource for the study of bladder cancer: Electrophoresis 20, 300–309.PubMedGoogle Scholar
  24. 24.
    Cordwell, S. J., Basseal, D. J., Humphery-Smith, I. (1997) Proteome analysis of Spiroplasma melliferum (A56) and protein characterisation across species boundaries. Electrophoresis 18, 1335–1346.PubMedGoogle Scholar
  25. 25.
    Cordwell, S. J., Wilkins, M. R., Cerpapoljak, A., Gooley, A. A., Duncan, M., Williams, K. L., Humphery-Smith, I. (1995) Cross-species identification of proteins separated by two-dimensional gel electrophoresis using matrix-assisted laser desorption ionisation/time-of-flight mass spectrometry and amino acid composition. Electrophoresis 16, 438–443.PubMedGoogle Scholar
  26. 26.
    Courchesne, P. L., Patterson, S. D. (1999) Identification of proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry using peptide and fragment ion masses. In: Link, A. J. (ed.), 2-D Proteome Analysis Protocols. Humana Press, Totowa, pp. 487–512.Google Scholar
  27. 27.
    Deiwick, J., Hensel, M. (1999) Regulation of virulence genes by environmental signals in Salmonella typhimurium. Electrophoresis 20, 813–817.Google Scholar
  28. 28.
    Driscoll, M. (1995) Methods for the study of cell death in the nematode Caenorhabditis elegans. Meth. Cell Biol. 46, 323–353.Google Scholar
  29. 29.
    Dunn, M. J. (1999) Detection of total proteins on Western blots of 2-D polyacrylamide gels. In: Link, A. J. (ed.), 2-D Proteome Analysis Protocols. Humana Press, Totowa, pp. 319–329.Google Scholar
  30. 30.
    Dunn, M. J. (1999) Electroblotting of proteins from 2-D polyacrylamide gels. In: Link, A. J. (ed.), 2D Proteome Analysis Protocols. Humana Press, Totowa, pp. 313–318.Google Scholar
  31. 31.
    Edgar, P. F., Schonberger, S. J., Dean, B., Faull, R. L., Kydd, R., Cooper, G. J. (1999) A comparative proteome analysis of hippocampal tissue from schizophrenic and Alzheimer’s disease individuals. Mol. Psychiatry 4, 173–178.PubMedGoogle Scholar
  32. 32.
    Ellis, R. E., Yuan, J., Horvitz, H. R. (1991) Mechanism and functions of cell death. Annu. Rev. Cell. Biol. 7, 663–698.PubMedGoogle Scholar
  33. 33.
    Erdjument-Bromage, H., Lui, M., Lacomis, L., Tempst, P. (1999) Characterizing proteins from 2-DE gels by internal sequence analysis of peptide fragments. In: Link, A. J. (ed.), 2-D Proteome Analysis Protocols, Humana Press, Totowa, pp. 467–472.Google Scholar
  34. 34.
    Ericsson, C., Pethö, Z., Mehlin, H. (1997) An online two-dimensional polyacrylamide gel elec-trophoresis protein database of adult Drosophila melanogaster. Electrophoresis 18, 484–490.PubMedGoogle Scholar
  35. 35.
    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.PubMedGoogle Scholar
  36. 36.
    Fountoulakis, M., Takacs, B., Langen, H. (1998) Two-dimensional map of basic proteins of Haemophilus influenzae. Electrophoresis 19, 761–766.PubMedGoogle Scholar
  37. 37.
    Franzen, B., Auer, G., Alaiya, A. A., Eriksson, E., Uryu, K., Hirano, T., Okuzawa, K., Kato, H., Linder, S. (1996) Assessment of homogeneity in polypeptide expression in breast carcinomas shows widely variable expression in highly malignant tumors. Int. J. Cancer 69, 408–414.PubMedGoogle Scholar
  38. 38.
    Franzen, B., Linder, S., Alaiya, A. A., Eriksson, E., Uryu, K., Hirano, T., Okuzawa, K., Auer, G. (1996) Analysis of polypeptide expression in benign and malignant human breast lesions: down-regulation of cytokeratins. Br. J. Cancer 73, 1632–1638.Google Scholar
  39. 39.
    Franzen, B., Linder, S., Uryu, K., Alaiya, A. A., Hirano, T., Kato, K., Auer, G. (1996) Expression of tropomyosin isoforms in benign and malignant human breast lesions. Br. J. Cancer 73, 909–913.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Franzen, B., Okuzawa, K., Linder, S., Kato, H., Auer, G. (1993) Nonenzymatic extraction of cells from clinical tumor material for analysis of gene expression by two-dimensional polyacrylamide gel-electrophoresis. Electrophoresis 14, 382–390.Google Scholar
  41. 41.
    Gander, J. E. (1984) Gel protein stains: Glycoproteins. Meth. Enzymol. 104, 447–451.Google Scholar
  42. 42.
    Garrels, J. I. (1989) The QUEST system for quantitative analysis of two-dimensional gels. J. Biol. Chem. 264, 5269–5282.Google Scholar
  43. 43.
    Gaveart, K., Vandekerckhove, J. (2000) Protein identification methods in proteomics. Electropho-resis 21, 1145–1154.Google Scholar
  44. 44.
    Gharahdaghi, F., Weinberg, C., Meagher, D., Imai, B., Mische, S. (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601–605.PubMedGoogle Scholar
  45. 45.
    Gianazza, E. (1999) Casting Immobilized pH Gradients (IPGs). In: Link, A. J. (ed.), 2-D Proteome Analysis Protocols. Humana Press, Totowa, pp. 175–188.Google Scholar
  46. 46.
    Görg, A., Obermaier, C., Boguth, G., Weiss, W. (1999) Recent developments in two-dimensional gel electrophoresis with immobilized pH gradients: wide pH gradients up to pH 12, longer separation distances and simplified procedures. Electrophoresis 20, 712–717.PubMedGoogle Scholar
  47. 47.
    Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., Weiss, W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.PubMedGoogle Scholar
  48. 48.
    Görg, A., Postel, W., Gunther, S. (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 317–339.Google Scholar
  49. 49.
    Görg, A., Obermaier, C., Boguth, G., Csordas, A., Diaz, J. J., Madjar, J. J. (1997) Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18, 328–337.PubMedGoogle Scholar
  50. 50.
    Grover, P. K., Resnick, M. I. (1997) High resolution two-dimensional electrophoretic analysis of urinary proteins of patients with prostatic cancer. Electrophoresis 18, 814–818.PubMedGoogle Scholar
  51. 51.
    Hanash, S. M. (2000) Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients: Current status. Electrophoresis 21, 1202–1209.PubMedGoogle Scholar
  52. 52.
    Hanash, S. M., Teichroew, D. (1998) Mining the human proteome: experience with the human lym-phoid protein database. Electrophoresis 19, 2004–2009.PubMedGoogle Scholar
  53. 53.
    Hansen, E. J., Wilson, R. M., Clyde, W. A., Baseman, J. B. (1981) Characterization of hemadsorption-negative mutants of Mycoplasma pneumoniae. Infect. Immun. 32, 127–136.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Harder, A., Wildgruber, R., Nawrocki, A., Fey, S. J., Larsen, P. M., Görg, A. (1999) Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20, 826–829.PubMedGoogle Scholar
  55. 55.
    Harry, J. L., Wilkins, M. R., Herbert, B. R., Packer, N. H., Gooley, A. A., Williams, K. L. (2000) Proteomics: Capacity versus utility. Electrophoresis 21, 1071–1081.Google Scholar
  56. 56.
    Hirano, T., Fujikoa, K., Franzen, B., Okuzawa, K., Uruy, K., Shibanuma, H., Numata, K., Konaka, C., Ebihara, Y., Takahashi, M., Kato, H., Auer, G. (1997) Relationship between TA01 and TA02 polypeptides associated with lung adenocarcinoma and histocytological features. Br. J. Cancer 75, 978–985.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Hsich, G., Kenney, K., Gibbs, C. J., Lee, K. H., Harrington, M. G. (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N. Engl. J. Med. 335, 924–930.PubMedGoogle Scholar
  58. 58.
    Jensen, O. N., Wilm, M., Shevchenko, A., Mann, M. (1999) Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. In: Link, A. J. (ed.), 2-D Proteome Analysis Protocols. Humana Press, Totowa, pp. 513–530.Google Scholar
  59. 59.
    Johnston, R. F., Pickett, S. C., Barker, D. L. (1990) Autoradiography using storage phosphor technology. Electrophoresis 11, 355–360.PubMedGoogle Scholar
  60. 60.
    Jungblut, P. R., Zimny-Arndt, U., Zeindl-Eberhart, E., Stulik, J., Koupilova, K., Pleissner, K. P., Otto, A., Muller, E. C., Sokolowska-Kohler, W., Grabner, G., Stoffer, G. (1999) Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 20, 2100–2110.PubMedGoogle Scholar
  61. 61.
    Jungblut, P. R., Schaible, U. E., Mollenkopf, H. J., Zimny-Arndt, U., Raupach, B., Mattow, J., Halada, P., Lamer, S., Hagens, K., Kaufmann, S. H. (1999) Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33, 1103–1117.PubMedGoogle Scholar
  62. 62.
    Kamo, M., Kawakami, T., Miyatake, N., Tsugita, A. (1995) Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 16, 423–430.PubMedGoogle Scholar
  63. 63.
    Kamo, M., Takamoto, K., Kawakami, T., Tsugita, A. (1995) Selective cleavage of protein with a vapour from perfluoric acid aqueous solution. Protein Sci. 4, 158.Google Scholar
  64. 64.
    Karas, M., Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.PubMedGoogle Scholar
  65. 65.
    Keim, D., Hailat, N., Melhem, R., Zhu, X. X., Lascu, I., Veron, M., Strahler, J., Hanash, S. M. (1992) Proliferation-related expression of p19/nm23 nucleoside diphosphate kinase. J. Clin. Invest. 89, 919–924.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Knecht, M., Regitz-Zagrosek, V., Pleissner, K. P., Emig, S., Jungblut, P., Hildebrant, A., Fleck, E. (1994) Dilated cardiomyopathy: computer-assisted analysis of endomyocardial biopsy protein patterns by two-dimensional gel electrophoresis. Eur. J. Clin. Chem. Clin. Biochem. 32, 615–624.PubMedGoogle Scholar
  67. 67.
    Konkel, M. E., Cieplak, W. (1992) Altered synthetic response of Campylobacter jejuni to cocultiva-tion with human epithelial cells is associated with enhanced internalization. Infect. Immun. 60, 4945–4949.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Langen, H., Berndt, P., Roder, D., Cairns, N., Lubec, G., Fountoulakis, M. (1999) Two-dimensional map of human brain proteins. Electrophoresis 20, 907–916.PubMedGoogle Scholar
  69. 69.
    Langen, H., Gray, C., Roder, D., Juranville, J. F., Takacs, B., Fountoulakis, M. (1997) From genome to proteome: protein map of Haemophilus influenzae. Electrophoresis 18, 1184–1192.PubMedGoogle Scholar
  70. 70.
    Laskey, R. A. (1980) The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. Meth. Enzymol. 65, 363–371.PubMedGoogle Scholar
  71. 71.
    Lemkin, P. F. (1997) Comparing two-dimensional electrophoretic gel images accross the Internet. Electrophoresis 18, 2759–2773.PubMedGoogle Scholar
  72. 72.
    Lemos, J. A., Giambiagi-Demarval, M., Castro, A. C. (1998) Expression of heat-shock proteins in Streptococcus pyogenes and their immunoreactivity with sera from patients with streptococcal diseases. J. Med. Microbiol. 47, 711–715.PubMedGoogle Scholar
  73. 73.
    Lin, J., Ficht, T. A. (1995) Protein synthesis in Brucella abortus induced during macrophage infection. Infect. Immun. 63, 1409–1414.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Link, A. J. (1999) Autoradiography of 2-D gels. In: Link, A. J. (ed.), 2-D Proteome Analysis Protocols. Humana Press, Totowa, pp. 285–290.Google Scholar
  75. 75.
    Link, A. J., Hays, L. G., Carmack, E. B., Yates, J. R. (1997) Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis 18, 1314–1334.PubMedGoogle Scholar
  76. 76.
    Lopez, M. F. (2000) Better approaches to finding the needle in a haystack: Optimizing proteome analysis through automation. Electrophoresis 21, 1082–1093.PubMedGoogle Scholar
  77. 77.
    Mádi, A., Kele, Z., Janáky, T., Punyiczki, M., Fésüs, L. (2001) Identification of protein substrates for transglutaminase in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 283, 964–968.PubMedGoogle Scholar
  78. 78.
    Mádi, A., Punyiczki, M., Fésüs, L. (1997) Lessons to learn from the cell death and heat shock genes of Caenorhabditis elegans. Acta Biol. Hung. 48, 303–318.PubMedGoogle Scholar
  79. 79.
    Mádi, A., Punyiczki, M., di Rao, M., Piacentini, M., Fésüs, L. (1998) Biochemical characterization and localization of transglutaminase in wild-type and cell-death mutants of the nematode Caenorhabditis elegans. Eur. J. Biochem. 253, 583–590.PubMedGoogle Scholar
  80. 80.
    Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C., Stover, C. K. (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282.PubMedGoogle Scholar
  81. 81.
    Mahon, A. C., Gebre, N., Nurling, A. (1990) The response of human B cells to Mycobacterium lep-rae. Identification of target antigens following polyclonal activation in vitro. Int. Immunol. 2, 803–812.PubMedGoogle Scholar
  82. 82.
    Merchant, M., Weinberger, S. R. (2000) Recent advancements in surface-enriched laser desorp-tion/ionization-time of flight-mass spectrometry. Electrophoresis 21, 1164–1167.PubMedGoogle Scholar
  83. 83.
    Miyatake, N., Kamo, M., Satake, K., Uchiyama, Y., Tsugita, A. (1993) Removal of N-terminal formyl groups and deblocking of pyrrolidone carboxylic acid of proteins with anhydrous hydrazine vapour. Eur. J. Biochem. 212, 785–789.PubMedGoogle Scholar
  84. 84.
    Nelson, R. W., Nedelkov, D., Tubbs, K. A. (2000) Biosensor chip mass spectrometry: A chip based proteomics approach. Electrophoresis 21, 1155–1163.PubMedGoogle Scholar
  85. 85.
    Neuhoff, V., Arold, N., Taube, D., Ehrhardt, W. (1988) Improved staining of proteins in polyacry-lamide gels including isoelectric focusing gels with clear background and nanogram sensitivity using Coomassie Brillant Blue G-250 and R-250. Electrophoresis 9, 255–262.PubMedGoogle Scholar
  86. 86.
    O’Farell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.Google Scholar
  87. 87.
    Okuzawa, K., Franzen, B., Lindholm, J., Linder, S., Hirano, T., Bergman, T., Ebihara, Y., Kato, H., Auer, G. (1994) Characterization of gene expression in clinical lung cancer materials by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 15, 382–390.PubMedGoogle Scholar
  88. 88.
    Ortiz, M. L., Calero, M., Fernandez-Patron, C., Patron, C. F., Castellanos, L., Mendez, E. (1992) Imidazole -SDS-Zn reverse staining of proteins in gels ctaining or not SDS and microsequence of individual unmodified electroblotted proteins. FEBS Lett. 296, 300–304.PubMedGoogle Scholar
  89. 89.
    Ostergaard, M., Rasmussen, H. H., Nielsen, H. V., Vorum, H., Orntoft, T. F., Wolf, H., Celis, J. E. (1997) Proteome profiling of bladder squamous cell carcinomas: identification of markers that define their degree of differentiation. Cancer Res. 57, 4111–4117.PubMedGoogle Scholar
  90. 90.
    Parker, K. C., Garrels, J. I., Hines, W., Butler, E. M., McKee, A. H., Patterson, D., Martin, S. (1998) Identification of yeast proteins from two-dimensional gels: working out spot cross-contamination. Electrophoresis 19, 1920–1932.PubMedGoogle Scholar
  91. 91.
    Pasquali, C., Frutiger, S., Wilkins, M. R., Hughes, G. J., Appel, R. D., Bairoch, A. (1996) Two-dimensional gel electrophoresis of Escherichia coli homogenates: the Escherichia coli SWISS-2DPAGE database. Electrophoresis 17, 547–555.PubMedGoogle Scholar
  92. 92.
    Patton, W. (1995) Biologist’s perspective on analytical imaging systems as applied to protein gel electrophoresis. J. Chromatogr. A. 698, 55–87.Google Scholar
  93. 93.
    Patton, W. F. (2000) A thousand points of light: The application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21, 1123–1144.PubMedGoogle Scholar
  94. 94.
    Plasterk, R. H. (1995) Reverse genetics: from gene sequence to mutant worm. Methods Cell Biol. 48, 59–80.PubMedGoogle Scholar
  95. 95.
    Rabilloud, T. (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19, 758–760.PubMedGoogle Scholar
  96. 96.
    Rabilloud, T., Valette, C., Lawrence. J. J. (1994) Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15, 1552–1558.PubMedGoogle Scholar
  97. 97.
    Rafie-Kolpin, M., Essenberg, R. C., Wyckhoff, J. H. (1996) Identification and comparison of macrophage-induced proteins and proteins induced under various stress conditions in Brucella abortus. Infect. Immun. 64, 5274–5283.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ramagli, L. S., Rodriguez, L. V. (1985) Quantitation of microgram amounts of protein in two-dime-sional polyacrylamide gel electrophoresis sample buffer. Electrophoresis 6, 559–563.Google Scholar
  99. 99.
    Reymond, M. A., Sanchez, J. C., Hughes, G. J., Gunther, K., Riese, J., Tortola, S., Peinadeo, M. A., Kirchner, T., Hohenberger, W., Hochstrasser, D. F., Kockerling, F. (1997) Standardized characterization of gene expression in human colorectal epithelium by two-dimensional electrophoresis. Electrophoresis 18, 2842–2848.PubMedGoogle Scholar
  100. 100.
    Rohlff, C. (2000) Proteomics in molecular medicine: Applications in central nervous systems disorders. Electrophoresis 21, 1227–1234.PubMedGoogle Scholar
  101. 101.
    Sarto, C., Marocchi, A., Sanchez, J. C., Giannone, D., Frutiger, S., Golaz, O., Wilkins, M. R., Doro, G., Capellano, F., Hughes, G., Hochstrasser, D. F., Moracelli, P. (1997) Renal cell carcinoma and normal kidney protein expression. Electrophoresis 18, 599–604.PubMedGoogle Scholar
  102. 102.
    Sazuka, T., Yamaguchi, M., Ohara, O. (1999) Cyano2Dbase updated: linkage of 234 protein spots to corresponding genes through N-terminal microsequencing. Electrophoresis 20, 2160–2171.PubMedGoogle Scholar
  103. 103.
    Schmid, R., Bernhardt, J., Antelmann, H., Wolker, A., Mach, H., Volker, U., Hecker, M. (1997) Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis. Microbiology 143, 991–998.PubMedGoogle Scholar
  104. 104.
    Shevchenko, A., Wilm, M., Vorm, O., Mann, M. (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Biochem. 224, 451–455.Google Scholar
  105. 105.
    Sowa, B. A., Kelly, K. A., Ficht, T. A., Adams, L. G. (1992) Virulence associated proteins of Brucella abortus identified by paired two-dimensional gel electrophoretic comparisons of virulent, vaccine and LPS deficient strains. Appl. Theor. Electrophor. 3, 33–40.PubMedGoogle Scholar
  106. 106.
    Sulston, J. E., Horvitz, H. R. (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 82, 110–156.Google Scholar
  107. 107.
    Sulston, J. E., Schierenberg, E., White, J. G., Thomson, J. N. (1983) The embrionic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119.PubMedGoogle Scholar
  108. 108.
    Sutherland, J. (1993) Electronic imaging of electrophoretic gels and blots. In: Chrambach, A., Dunn, M., Radola, B. (eds), Advances in Electrophoresis, vol. 6. VCH, New York, pp. 1–42.Google Scholar
  109. 109.
    Teixeira-Gome, A. P., Cloeckaert, A., Bezard, G., Bowden, R. A., Dubray, G., Zygmunt, M. S. (1997) Identification and characterization of Brucella ovis immunogenic proteins using two-dimensional electrophoresis and immunoblotting. Electrophoresis 18, 1491–1497.Google Scholar
  110. 110.
    Thalmann, I., Kohut, R. I., Ryu, J. H., Thalmann, R. (1995) High resolution two-dimensional elec-trophoresis: technique and potential applicability to the study of inner ear disease. Am. J. Otol. 16, 153–157.PubMedGoogle Scholar
  111. 111.
    Tonella, L., Walsh, B. J., Sanchez, J. C., Ou, K., Wilkins, M. R., Tyler, M., Frutiger, S., Gooley, A. A., Pescaru, I., Appel, R. D., Yan, J. X., Bairoch, A., Hoogland, C., Morch, F. S., Hughes, G. J., Williams, K. L., Hochstrasser, D. F. (1998) ’98 Escherichia coli SWISS-2DPAGE database update. Electrophoresis 19, 1960–1971.PubMedGoogle Scholar
  112. 112.
    Tsuji, T., Shimohama, S., Kamiya, S., Sazuka, T., Ohara, O. (1999) Analysis of brain proteins in Alzheimer’s disease using high-resolution two-dimensional gel electrophoresis. J. Neurol. Sci. 166, 100–106.PubMedGoogle Scholar
  113. 113.
    Urquhart, B. L., Cordwel, S. J., Humphery-Smith, I (1998) Comparison of predicted and observed properties of proteins encoded in the genome of Mycobacterium tuberculosis H37Rv. Biochem. Biophys. Res. Commun. 253, 70–79.PubMedGoogle Scholar
  114. 114.
    VanBogelen, R. A., Abshire, K. Z., Pertsemlidis, A., Clark, R. L., Neidhardt, F. C. (1996) Gene-protein database of Escherichia coli K-12. In: Neidhardt, F. C., Curtiss, R., Gross, C., Ingraham, J. L., Lin, E. C. C., Low, K. B. et al. (eds), Escherichia coli and Salmonella: Cellular and Molecular Biology ASM, Washington, DC, pp. 2067–2117.Google Scholar
  115. 115.
    Vurma-Raap, U., Kayser, F. H., Hadorn, K., Wiederkehr, F. (1990) Mechanism of imipenem resistance acquired by three Pseudomonas aeruginosa strains during imipenem therapy. Eur. J. Clin. Microbiol. Infect. Dis. 9, 580–587.Google Scholar
  116. 116.
    Walsh, B. J., Molloy, M. P., Williams, K. L. (1998) The Australian Proteome Analysis Facility (APAF): assembling large scale proteomics through integration and automation. Electrophoresis 19, 1883–1890.PubMedGoogle Scholar
  117. 117.
    Wasinger, V. C., Urquhart, B. N. L., Humphery-Smith, I. (1999) Cross-species characterisation of abundantly expressed Ochrobactrum anthropi gene products. Electrophoresis 20, 2196–2203.PubMedGoogle Scholar
  118. 118.
    Watkins, C., Sadun, A., Marenka, S. (1993) Modem Image Processing; Warping, Morphing and Classical Techniques. Academic Press, New York.Google Scholar
  119. 119.
    Weiss, W., Poste, W., Görg, A. (1992) Application of sequential extraction procedures and glyco-protein blotting for the characterization of the 2-D polypeptide patterns of barley seed proteins. Electrophoresis 13, 770–773.PubMedGoogle Scholar
  120. 120.
    Weiss, W., Vogelmeier, C., Görg, A. (1993) Electrophoretic characterization of wheat grain allergens from different cultivars involved in bakers’ asthma. Electrophoresis 14, 805–816.PubMedGoogle Scholar
  121. 121.
    Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J. C. Yan, J. X., Gooley, A. A., Hughes, G., Humphery-Smith, I., Williams, K. L., Hochstrasser, D. F. (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14, 61–65.PubMedGoogle Scholar
  122. 122.
    Wiltfgang, J., Otto, M., Baxter, H. C., Bodamer, M., Steinacker, P., Bahn, E., Zerr, I., Komhuber, J., Kretzschmar, H. A., Poser, S., Ruther, E., Aitkien, A. (1999) Isoform pattern of 14-3-3 proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J. Neurochem. 73, 2485–2490.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2003

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Mádi
    • 1
  • Tünde Pusztahelyi
    • 2
  • Mária Punyiczki
    • 3
  • L. Fésüs
    • 1
    • 3
    Email author
  1. 1.Signal Transduction and Apoptosis Research Group of the Hungarian Academy of SciencesUniversity of DebrecenDebrecenHungary
  2. 2.Department of Microbiology and BiotechnologyUniversity of DebrecenDebrecenHungary
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations