Acta Biologica Hungarica

, Volume 53, Issue 1–2, pp 7–21 | Cite as

Ascending and Descending Projections of the Lateral Vestibular Nucleus in the Rat

  • Timea Bácskai
  • G. Székely
  • Clara MateszEmail author


The tracer neurobiotin was injected into the lateral vestibular nucleus in rat and the efferent fiber connections of the nucleus were studied. The labeled fibers reached the diencephalon rostrally and the sacral segments of the spinal cord caudally. In the diencephalon, the ventral posteromedial and the gustatory nuclei received the most numerous labeled fibers. In the mesencephalon, the inferior colliculus, the interstitial nucleus of Cajal, the nucleus of Darkschewitch, the periaqueductal gray matter and the red nucleus received large numbers of labeled fibers. In the rhombencephalon, commissural and internuclear connections originated from the lateral vestibular nucleus to all other vestibular nuclei. The medioventral (motor) part of the reticular formation was richly supplied, whereas fewer fibers were seen in the lateral (vegetative) part. In the spinal cord, the descending fibers were densely packed in the anterior funiculus and in the ventral part of the lateral funiculus. Collaterals invaded the entire gray matter from lamina IX up to lamina III; the fibers and terminals were most numerous in laminae VII and VIII. Collateral projections were rich in the cervical and lumbosacral segments, whereas they were relatively poor in the thoracic segments of the spinal cord. It was concluded that the fiber projection in the rostral direction was primarily aimed at sensory-motor centers; in the rhombencephalon and spinal cord, fibers projected onto structures subserving various motor functions.


Lateral vestibular nucleus rat neurobiotin labeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aicher, S. A., Reis, D. J., Nicolae, R., Milner, T. A. (1995) Monosynaptic projections from the medullary gigantocellular reticular formation to sympathetic preganglionic neurons in the thoracic spinal cord. J. Comp. Neurol. 363, 563–580.PubMedGoogle Scholar
  2. 2.
    Akbarian, S., Grusser, O. J., Guldin, W. O. (1992) Thalamic connections of the vestibular cortical fields in the squirrel monkey (Saimiri sciureus). J. Comp. Neurol. 326, 423–441.PubMedGoogle Scholar
  3. 3.
    Asanuma, C., Andersen, R. A., Cowan, W. M. (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J. Comp. Neurol. 241, 357–381.PubMedGoogle Scholar
  4. 4.
    Balaban, C. D., Beryozkin, G. (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp. Brain Res. 98, 200–212.PubMedGoogle Scholar
  5. 5.
    Brodal, A. (1981) Neurological Anatomy. Oxford University Press, New York. pp. 201–205.Google Scholar
  6. 6.
    Carpenter, M. B., Strominger, N. L. (1965) The medial longitudinal fasciculus and disturbances of conjugate horizontal eye movements in the monkey. J. Comp. Neurol. 125, 41–65.PubMedGoogle Scholar
  7. 7.
    Deecke, L., Schwarz, D. W., Fredrickson, J. M. (1977) Vestibular responses in the rhesus monkey ventroposterior thalamus. II. Vestibulo-proprioceptive convergence at thalamic neurons. Exp. Brain Res. 30, 219–232.PubMedGoogle Scholar
  8. 8.
    Donevan, A. H., Fleming, F. L., Rose, P. K. (1992) Morphology of single vestibulospinal collaterals in the upper cervical spinal cord of the cat: I. Collaterals originating from axons in the ventromedial funiculus contralateral to their cells of origin. J. Comp. Neurol. 322, 325–342.PubMedGoogle Scholar
  9. 9.
    Epema, A. H., Gerrits, N. M., Voogd, J. (1988) Commissural and intrinsic connections of the vestibular nuclei in the rabbit: a retrograde labelling study. Exp. Brain Res. 71, 129–146.Google Scholar
  10. 10.
    Fukushima, K., Kaneko, C. R. (1995) Vestibular integrators in the oculomotor system. Neurosci. Res. 22, 249–258.PubMedGoogle Scholar
  11. 11.
    Gaymard, B., Rivaud, S., Pierrot-Deseilligny, C. (1994) Impairment of extraretinal eye position signals after central thalamic lesions in humans. Exp. Brain Res. 102, 1–9.PubMedGoogle Scholar
  12. 12.
    Giardino, L., Zanni, M., Pignataro, O. (1996) DA1 and DA2 receptor regulation in the striatum of young and old rats after peripheral vestibular lesion. Brain Res. 736, 111–117.PubMedGoogle Scholar
  13. 13.
    Ito, J., Matsuoka, I., Sasa, M., Takaori, S. (1985) Commissural and ipsilateral internuclear connection of vestibular nuclear complex of the cat. Brain Res. 341, 73–81.Google Scholar
  14. 14.
    Jimenez-Castellanos, J. Jr., Reinoso-Suarez, F. (1985) Topographical organization of the afferent connections of the principal ventromedial thalamic nucleus in the cat. J. Comp. Neurol. 236, 297–314.PubMedGoogle Scholar
  15. 15.
    Jones, E. G., Leavitt, R. Y. (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J. Comp. Neurol. 154, 349–377.Google Scholar
  16. 16.
    Jones, E. G., Wise, S. P., Coulter, J. D. (1979) Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J. Comp. Neurol. 183, 833–881.PubMedGoogle Scholar
  17. 17.
    Kim, U., Gregory, E., Hall, W. C. (1992) Pathway from the zona incerta to the superior colliculus in the rat. J. Comp. Neurol. 321, 555–575.PubMedGoogle Scholar
  18. 18.
    Kotchabhakdi, N., Rinvik, E., Walberg, F., Yingchareon K. (1980) The vestibulothalamic projections in the cat studied by retrograde axonal transport of horseradish peroxidase. Exp. Brain Res. 40, 405–418.PubMedGoogle Scholar
  19. 19.
    Kulik, A., Matesz, C. (1994) Experimental study of spinal cord and brainstem projections of the vestibulocochlear nuclei in the frog. Eur. J. Neurosci. 7S, 220.Google Scholar
  20. 20.
    Ladpli, R., Brodal, A. (1968) Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res. 8, 65–96.PubMedGoogle Scholar
  21. 21.
    Lang, W., Buttner-Enneverm, J. A., Buttner, U. (1979) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res. 177, 3–17.PubMedGoogle Scholar
  22. 22.
    Loewy, A. D., Spyer, K. M. (1990) Central Regulation of Autonomic Functions. Oxford University Press, New York.Google Scholar
  23. 23.
    Maeda, M., Magherini, P. C., Precht, W. (1977) Functional organization of vestibular and visual inputs to neck and forelimb motoneurons in the frog. J. Neurophysiol. 40, 225–243.PubMedGoogle Scholar
  24. 24.
    Magherini, P. C., Precht, W., Richter, A. (1974) Vestibulospinal effects on hindlimb motoneurons of the frog. Pflugers Arch. 348, 211–223.PubMedGoogle Scholar
  25. 25.
    Magherini, P. C., Precht, W., Schwindt, P. C. (1974) Functional organization of the vestibular input to ocular motoneurons of the frog. Pflugers Arch. 349, 149–158.PubMedGoogle Scholar
  26. 26.
    Matesz, C., Nagy, E., Kulik, A., Tonkol, A. (1997) Projections of the medial and superior vestibular nuclei to the brainstem and spinal cord in the rat. Neurobiology, 5, 489–493.PubMedGoogle Scholar
  27. 27.
    Matesz, C., Bkai, T., Nagy, E., Halasi, G., Kulik, A. (2001) Efferent connections of the vestibular nuclei in the rat: A neuromorphological study using PHA-L. Brain Res. Bull. (In press)Google Scholar
  28. 28.
    McCrea, R. A., Strassman, A., Highstein, S. M. (1987) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J. Comp. Neurol. 264, 571–594.Google Scholar
  29. 29.
    Miller, A. D., Ruggiero, D. A. (1994) Emetic reflex arc revealed by expression of the immediateearly gene c-fos in the cat. J. Neurosci. 14, 871–888.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Miller, A. D., Yamaguchi, T., Siniaia, M. S., Yates, B. J. (1995) Ventral respiratory group bulbospinal inspiratory neurons participate in vestibular-respiratory reflexes. J. Neurophysiol. 73, 1303–1307.PubMedGoogle Scholar
  31. 31.
    Mitsacos, A., Reisine, H., Highstein, S. M. (1983) The superior vestibular nucleus: an intracellular HRP study in the cat. I. Vestibulo-ocular neurons. J. Comp. Neurol. 215, 78–91.PubMedGoogle Scholar
  32. 32.
    Morel, A., Kaas, J. H. (1992) Subdivisions and connections of auditory cortex in owl monkeys. J. Comp. Neurol. 318, 27–63.PubMedGoogle Scholar
  33. 33.
    Nagata, S. (1986) The vestibulothalamic connections in the rat: a morphological analysis using wheat germ agglutinin-horseradish peroxidase. Brain Res. 376, 57–70.PubMedGoogle Scholar
  34. 34.
    Nakano, K., Hasegawa, Y., Kayahara, T., Tokushige, A., Kuga, Y. (1993) Cortical connections of the motor thalamic nuclei in the Japanese monkey. Macaca fuscata. Stereotact. Funct. Neurosurg. 60, 42–61.PubMedGoogle Scholar
  35. 35.
    Paxinos, G., Watson, C. (1986) The Rat Brain in Stereotaxic Coordinates. 2nd edition. Academic Press, New York, Boston & London.Google Scholar
  36. 36.
    Peterson, B. W., Coulter, J. D. (1977) A new long spinal projection from the vestibular nuclei in the cat. Brain Res. 122, 351–356.Google Scholar
  37. 37.
    Rubertone, J. A., Mehler, W. R., Cox, G. E. (1983) The intrinsic organization of the vestibular complex: evidence for internuclear connectivity. Brain Res. 263, 137–141.PubMedGoogle Scholar
  38. 38.
    Shiroyama, T., Kayahara, T., Yasui, Y., Nomura, J., Nakano, K. (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J. Comp. Neurol. 407, 318–332.PubMedGoogle Scholar
  39. 39.
    Smith, P. F. (1997) Vestibular-hippocampal interactions. Hippocampus 7, 465–471.PubMedGoogle Scholar
  40. 40.
    Spiegel, E. A., Szekely, E. G., Gildenberg, P. L. (1964) Electrographic study of the projections of the labyrinth to subcortical areas in the mesencephalon, diencephalon and prosencephalon. Trans. Am. Neurol. Assoc. 89, 260–262.PubMedGoogle Scholar
  41. 41.
    Tracey, D. J., Asanuma, C., Jones, E. G., Porter, R. (1980) Thalamic relay to motor cortex: afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J. Neurophysiol. 44, 532–554.PubMedGoogle Scholar
  42. 42.
    Van Groen, T., Wyss, J. M. (1992) Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J. Comp. Neurol. 324, 427–448.PubMedGoogle Scholar
  43. 43.
    Yates, B. J., Balaban, C. D., Miller, A. D., Endo, K., Yamaguchi, Y. (1995) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res. 689, 197–206.PubMedGoogle Scholar
  44. 44.
    Zheng, Y., Smith, P. F., Darlington, C. L. (1999) Noradrenaline and serotonin levels in the guinea pig hippocampus following unilateral vestibular deafferentation. Brain Res. 836, 199–202.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Anatomy, Histology and EmbryologyUniversity of Debrecen, Medical and Health Science CenterDebrecenHungary

Personalised recommendations