Acta Biologica Hungarica

, Volume 53, Issue 1–2, pp 153–165 | Cite as

Position and Size of the Axon Hillock in Various Groups of Neurons

  • M. RéthelyiEmail author


The origin of the axon was studied in Golgi-Kopsch impregnated specimens prepared from the spinal cord and brain of adult rats. Five types of neurons were sampled: large ventral horn neurons, neurons in the intermediate zone and ventral horn of the spinal cord, antenna-type neurons in the spinal dorsal horn, neurons in the thalamus, and neurons in the hypothalamus. The axon originated from the perikaryon in 76% of the large ventral horn neurons and in 64% of the neurons in the thalamus. In contrast, the axon emerged from one of the dendrites in 75% of the neurons in the intermediate zone and the ventral horn of the spinal cord and in 68% of the neurons in the hypothalamus. In the case of the antenna-type neurons in the spinal dorsal horn, the axon often originated from one of the dendrites, but never from a dorsally oriented dendrite. The mean distance of the axon hillock of dendritic origin was the longest in the neurons in the intermediate zone and the ventral horn of the spinal cord. The size of the axon hillock was proportional to the size of the perikaryon. The impregnated portion of the axon was longest in the large ventral horn neurons.


Axon hillock spinal neurons thalamic neurons hypothalamic neurons rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodoky, M., Réthelyi, M. (1977) Dendritic arborization and axon trajectory of neurons in the hypothalamic arcuate nucleus of the rat. Exp. Brain. Res. 28, 543–555.CrossRefGoogle Scholar
  2. 2.
    Chen, X. Y., Wolpaw, J. R. (1994) Triceps surae motoneuron morphology in the rat: a quantitative light microscopic study. J. Comp. Neurol. 343, 143–157.CrossRefGoogle Scholar
  3. 3.
    Colbert, C. M., Johnston, D. (1996) Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neuroscience 16, 6676–6686.CrossRefGoogle Scholar
  4. 4.
    Conradi, S. (1969) Observations on the ultrastructure of the axon hillock and initial segment of lumbosacral motoneurons in the cat. Acta Physiol. Scand. Suppl. 332, 65–84.PubMedGoogle Scholar
  5. 5.
    Domesick, V. B., Morest, D. K. (1977) Migration and differentiation of shepherd’s crook cells in the optic tectum of the chick embryo. Neuroscience 2, 477–491.CrossRefGoogle Scholar
  6. 6.
    Majorossy, K., Réthelyi, M. (1968) Synaptic architecture in the medial geniculate body (ventral division). Exp. Brain. Res. 6, 306–323.CrossRefGoogle Scholar
  7. 7.
    Maxwell, D. J., Réthelyi, M. (1987) Ultrastructure and synaptic connections of cutaneous afferent fibres in the spinal cord. TINS 10, 117–123, 1987.Google Scholar
  8. 8.
    Millhouse, O. E. A Golgi anatomy of the rodent hypothalamus. In: Morgane, P. J., Pankseep, J. (eds), Handbook of the Hypothalamus, Vol. I. Marcel Dekker, Inc., New York, pp. 221–265.Google Scholar
  9. 9.
    Morest, D. K. (1970) A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Ent. Gesch. 130, 265–305.CrossRefGoogle Scholar
  10. 10.
    Palay, S. L., Sotelo, C., Peters, A., Orkland, P. M. (1968) The axon hillock and the initial segment. J. Cell. Biol. 38, 193–201.CrossRefGoogle Scholar
  11. 11.
    Ramon y Cajal, S. (1999) Texture of the Nervous System of Man and Vertebrates. Springer Verlag, Vienna.CrossRefGoogle Scholar
  12. 12.
    Réthelyi, M. (1976) Central core in the spinal gray matter. Acta Morph. Acad. Sci. Hung. 24, 63–70.Google Scholar
  13. 13.
    Segev, I., London, M. (1999) A theoretical view of passive and active dendrites. In: Stuart, G., Spruston, N., Häusser, M., Dendrites. Oxford University Press, pp. 203–230.Google Scholar
  14. 14.
    Spruston, N., Stuart, G., Häusser, M. (1999) Dendritic integration. In: Stuart, G., Spruston, N., Häusser, M., Dendrites. Oxford University Press, pp. 231–270.Google Scholar
  15. 15.
    Szentágothai, J. (1964) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J. Comp. Neurol. 1222, 219–240.CrossRefGoogle Scholar
  16. 16.
    Szentágothai, J. (1964) The parvicellular neurosecretory system. Progr. Brain Res. 5, 135–146.CrossRefGoogle Scholar
  17. 17.
    Ulfhake, B., Kellerth, J. O. (1981) A quantitative light microscopic study of the dendrites of cat spinal alpha-motoneurons after intracellular staining with horseradish peroxidase. J. Comp. Neurol. 202, 571–583.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of AnatomySemmelweis UniversityBudapestHungary

Personalised recommendations