Position and Size of the Axon Hillock in Various Groups of Neurons

Abstract

The origin of the axon was studied in Golgi-Kopsch impregnated specimens prepared from the spinal cord and brain of adult rats. Five types of neurons were sampled: large ventral horn neurons, neurons in the intermediate zone and ventral horn of the spinal cord, antenna-type neurons in the spinal dorsal horn, neurons in the thalamus, and neurons in the hypothalamus. The axon originated from the perikaryon in 76% of the large ventral horn neurons and in 64% of the neurons in the thalamus. In contrast, the axon emerged from one of the dendrites in 75% of the neurons in the intermediate zone and the ventral horn of the spinal cord and in 68% of the neurons in the hypothalamus. In the case of the antenna-type neurons in the spinal dorsal horn, the axon often originated from one of the dendrites, but never from a dorsally oriented dendrite. The mean distance of the axon hillock of dendritic origin was the longest in the neurons in the intermediate zone and the ventral horn of the spinal cord. The size of the axon hillock was proportional to the size of the perikaryon. The impregnated portion of the axon was longest in the large ventral horn neurons.

References

  1. 1.

    Bodoky, M., Réthelyi, M. (1977) Dendritic arborization and axon trajectory of neurons in the hypothalamic arcuate nucleus of the rat. Exp. Brain. Res. 28, 543–555.

    CAS  Article  Google Scholar 

  2. 2.

    Chen, X. Y., Wolpaw, J. R. (1994) Triceps surae motoneuron morphology in the rat: a quantitative light microscopic study. J. Comp. Neurol. 343, 143–157.

    CAS  Article  Google Scholar 

  3. 3.

    Colbert, C. M., Johnston, D. (1996) Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neuroscience 16, 6676–6686.

    CAS  Article  Google Scholar 

  4. 4.

    Conradi, S. (1969) Observations on the ultrastructure of the axon hillock and initial segment of lumbosacral motoneurons in the cat. Acta Physiol. Scand. Suppl. 332, 65–84.

    CAS  PubMed  Google Scholar 

  5. 5.

    Domesick, V. B., Morest, D. K. (1977) Migration and differentiation of shepherd’s crook cells in the optic tectum of the chick embryo. Neuroscience 2, 477–491.

    CAS  Article  Google Scholar 

  6. 6.

    Majorossy, K., Réthelyi, M. (1968) Synaptic architecture in the medial geniculate body (ventral division). Exp. Brain. Res. 6, 306–323.

    CAS  Article  Google Scholar 

  7. 7.

    Maxwell, D. J., Réthelyi, M. (1987) Ultrastructure and synaptic connections of cutaneous afferent fibres in the spinal cord. TINS 10, 117–123, 1987.

    Google Scholar 

  8. 8.

    Millhouse, O. E. A Golgi anatomy of the rodent hypothalamus. In: Morgane, P. J., Pankseep, J. (eds), Handbook of the Hypothalamus, Vol. I. Marcel Dekker, Inc., New York, pp. 221–265.

  9. 9.

    Morest, D. K. (1970) A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Ent. Gesch. 130, 265–305.

    CAS  Article  Google Scholar 

  10. 10.

    Palay, S. L., Sotelo, C., Peters, A., Orkland, P. M. (1968) The axon hillock and the initial segment. J. Cell. Biol. 38, 193–201.

    CAS  Article  Google Scholar 

  11. 11.

    Ramon y Cajal, S. (1999) Texture of the Nervous System of Man and Vertebrates. Springer Verlag, Vienna.

    Book  Google Scholar 

  12. 12.

    Réthelyi, M. (1976) Central core in the spinal gray matter. Acta Morph. Acad. Sci. Hung. 24, 63–70.

    Google Scholar 

  13. 13.

    Segev, I., London, M. (1999) A theoretical view of passive and active dendrites. In: Stuart, G., Spruston, N., Häusser, M., Dendrites. Oxford University Press, pp. 203–230.

    Google Scholar 

  14. 14.

    Spruston, N., Stuart, G., Häusser, M. (1999) Dendritic integration. In: Stuart, G., Spruston, N., Häusser, M., Dendrites. Oxford University Press, pp. 231–270.

    Google Scholar 

  15. 15.

    Szentágothai, J. (1964) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J. Comp. Neurol. 1222, 219–240.

    Article  Google Scholar 

  16. 16.

    Szentágothai, J. (1964) The parvicellular neurosecretory system. Progr. Brain Res. 5, 135–146.

    Article  Google Scholar 

  17. 17.

    Ulfhake, B., Kellerth, J. O. (1981) A quantitative light microscopic study of the dendrites of cat spinal alpha-motoneurons after intracellular staining with horseradish peroxidase. J. Comp. Neurol. 202, 571–583.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Réthelyi.

Additional information

Dedicated to Professor József Hámori on the occasion of his 70th birthday.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Réthelyi, M. Position and Size of the Axon Hillock in Various Groups of Neurons. BIOLOGIA FUTURA 53, 153–165 (2002). https://doi.org/10.1556/ABiol.53.2002.1-2.15

Download citation

Keywords

  • Axon hillock
  • spinal neurons
  • thalamic neurons
  • hypothalamic neurons
  • rat