Cadmium Ions Modulate Gaba Induced Currents in Molluscan Neurons

Abstract

The effect of Cd2+, as one of the most widespread toxic environmental pollutants, was studied on γ-aminobutyric acid (GABA) evoked responses of identified neurons in the central nervous system of the pond snail. Lymnaea stagnalis L. (Gastropoda). In the experiments, the modulation of the action of GABA both on neuronal activity (current clamp recording) and on the a GABA activated membrane Cl-current (voltage clamp studies) has been shown. It was found that:

  1. 1.

    GABA could evoked three different various types of response in GABA sensitive neurons: i) hyperpolarization with strong inhibition of ongoing spike activity, ii) short depolarization with an increase of spike the activity, iii) biphasic respone with a short excitation followed by a more prolonged long inhibition.

  2. 2.

    In low-Cl solution the inhibitory action of GABA was reduced or eliminated, but the excitatory one was not or only moderately affected.

  3. 3.

    CdCl2 inhibited the GABA evoked hyperpolarization, but left intact or only slightly reduced the excitation evoked by GABA.

  4. 4.

    The inward Cl--current evoked by GABA at a −75 mV holding potential was slightly augmented in the presence of 1 μmol/l Cd2+, but was reduced or blocked at higher cadmium concentrations. The effect of Cd2+ was concentration and time dependent.

  5. 5.

    Parallel with reducing the GABA evoked current, cadmium increased both the time to peak and the half inactivation time of the current.

  6. 6.

    CdCl2 alone, in 50 μmol/l concentration, induced a 1–2 nA inward current.

The blocking effect of cadmium on GABA activated inhibitory processes can be an important component of the neurotoxic effects of this heavy metal ion.

References

  1. 1.

    Akopian, A., Gabriel, R., Witkovsky, P. (1998) Calcium released from intracellular stores inhibits GABAA-mediated currents in ganglion cells of the turtle retina. J. Neurophysiol. 80, 1105–1115.

    CAS  Article  Google Scholar 

  2. 2.

    Arakawa, O., Nakahiro, M, Narahashi, T. (1991) Mercury modulation of GABA-activated chloride channels and non-specific cation channels in rat dorsal root ganglion neurons. Brain Res. 551, 58–63.

    CAS  Article  Google Scholar 

  3. 3.

    Bokisch, A. J., Walker, R. J. (1986) The ionic mechanism associated with the action of putative transmitters on identified neurons of the snail. Helix aspersa. Comp. Biochem. Physiol. 84C, 231–241.

    CAS  Google Scholar 

  4. 4.

    Büsselberg, D., Michael, D., Platt, B. (1994) Pb2+ reduces voltage- and N-methyl-D-aspartate (NMDA)-activated calcium channel currents. Cell. Mol. Neurobiol. 14, 711–722.

    Article  Google Scholar 

  5. 5.

    Carpenter, D. O. (1994) The public health significance of metal neurotoxicity. Cell. Mol. Neurobiol. 14, 591–597.

    CAS  Article  Google Scholar 

  6. 6.

    Chang, L. W. (ed.). Toxicology of Metals. CRC Press, Inc., Lewis Publisheres, New York, USA, 1996.

    Google Scholar 

  7. 7.

    Darlison, M. G., Hutton, M. L., Harvey, R. J. (1993) Molluscan ligand-gated ion-channel receptors. In: Pichon, Y. (ed.). Comparative Molecular Neurobiology. Birkhauser Verlag, Basel, Switzerland, pp. 48–64.

    Chapter  Google Scholar 

  8. 8.

    Enz, R., Ross, B. J., Cutting, G. R. (1999) Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. J. Neurosci. 19, 9841–9847.

    CAS  Article  Google Scholar 

  9. 9.

    Gupta, A., Wang, Y., Macram, H. (2000) Organizing principles for a diversity of GABAergic inter-neurons and synapses in the neocortex. Science 287, 273–278.

    CAS  Article  Google Scholar 

  10. 10.

    Győri, J., Kiss, T., Shcherbatko, A. D., Belan, P. V., Tepikin, A. V., Osipenko, O. N., Salánki, J. (1991) Effect of Ag+ on membrane permeability of perfuse. Helix pomatia neurons. J. Physiol. (London) 442, 1–13.

    Article  Google Scholar 

  11. 11.

    Győri, J., Fejtl, M., Carpenter, D. O., Salánki, J. (1994) Effect of HgCl2 on acetylcholine, carbachol, and glutamate currents o. Aplysia neurons. Cell. Mol. Neurobiol. 14, 653–664.

    Article  Google Scholar 

  12. 12.

    Herlenius, E., Lagercrantz, H. (2001) Neurotransmitter and neuromodulators during early human development. Early Hum. Dev. 65, 21–37.

    CAS  Article  Google Scholar 

  13. 13.

    Hille, B. (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys. J. 15, 615–619.

    CAS  Article  Google Scholar 

  14. 14.

    Jungwirth A., Paulmichl, M., Lang F. (1990) Cadmium enhances potassium conductance in cultured renal epitheloid (MDCK) cells. Kidney International 37, 1477–1486.

    CAS  Article  Google Scholar 

  15. 15.

    Kajita, H., Omori, K., Matsuda, H. (2000) The chloride channel ClC-2 contributes to the inwardly rectifying Cl- conductance in cultured porcine choroid plexus epithelial cells. J. Physiol (London) 523, 313–324.

    CAS  Article  Google Scholar 

  16. 16.

    Kaneko, A., Tachibana, M. (1986) Blocking effect of cobalt and related ions on the gamma-aminobu-tyric acid-induced current in turtle retinal cones. J. Physiol. (London) 373, 463–479.

    CAS  Article  Google Scholar 

  17. 17.

    Kiss, T., Osipenko, O. N. (1994) Toxic effects of heavy metals on ionic channels. Pharmacol. Rev. 46, 245–267.

    CAS  PubMed  Google Scholar 

  18. 18.

    Leake, L., Walker, R. J. (1980). Invertebrate Neuropharmacology, Blackie, Glasgow and London, U.K.

    Google Scholar 

  19. 19.

    Ma, J. Y., Narahashi, T. (1993) Differential modulation of GABAA receptor-channel complex by polyvalent cations in rat dorsal root ganglion neurons. Brain Res. 607, 222–232.

    CAS  Article  Google Scholar 

  20. 20.

    Miledi, R., Parker, I., Woodward, R. M. (1989) Membrane currents elicited by divalent cations i. Xenopus oocytes. J. Physiol. (London) 417, 173–195.

    CAS  Article  Google Scholar 

  21. 21.

    Narahashi T., Ma, J. Y., Arakawa, O., Reuveny, E., Nakahiro, M. (1994) GABA receptor-channel complex as a target site of mercury, copper, zink, and lanthanides. Cell. Mol. Neurobiol. 14, 599–621.

    CAS  Article  Google Scholar 

  22. 22.

    Nogawa, K., Kido, T. (1966) Itai-itai disease and health effects of cadmium. In: Chang, L. W. (ed.). Toxicology of Metals. Lewis Publishers, New York, USA, pp. 353–369.

    Google Scholar 

  23. 23.

    Oortgiesen, M., van Kleef, R. G. D. M., Bajnath, R. B., Vijverberg, H. P. M. (1990) Novel type of ion channel activated by Pb2+, Cd2+ and Al3+ in cultured mouse neuroblastoma cells. J. Membr. Biol. 113, 261–268.

    CAS  Article  Google Scholar 

  24. 24.

    Ropert, N., Guy, N. (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampu. in vitro. J. Physiol. (London) 441, 121–136.

    CAS  Article  Google Scholar 

  25. 25.

    Rubakhin, S. S., Győri, J., Carpenter, D. O., Salánki, J. (1995) HgCl2 potentiates GABA activated currents i. Lymnaea stagnalis neurones. Acta Biol. Hung. 46, 431–444.

    CAS  PubMed  Google Scholar 

  26. 26.

    Rubakhin, S. S., Szűcs, A., S.-Rózsa, K. (1996) Characterization of the GABA response on identified dialyse. Lymnaea neurons. Gen. Pharmac. 27, 731–739.

    CAS  Article  Google Scholar 

  27. 27.

    Salánki, J. (1988) Invertebrates in neuroscience. In: Salánki, J., S.-Rózsa, K. (eds.). Neurobiology of Invertebrates. Transmitters, Modulators and Receptors. Akadémiai Kiadó, Budapest, Hungary, pp. 1–10.

    Google Scholar 

  28. 28.

    Salánki, J., Győri, J., Carpenter, D. O. (1994) Action of lead on glutamate activated chloride currents i. Helix pomatia L. neurons. Cell. Mol. Neurobiol. 14, 755–768.

    Article  Google Scholar 

  29. 29.

    S.-Rózsa, K. (2000) Modulation of firing pattern and oscillation in nerve cells o. Lymnaea during network reconstruction. Acta Biol. Hung. 51, 211–230.

    Google Scholar 

  30. 30.

    S.-Rózsa, K., Salánki, J. (1985) Effects of heavy metals on the chemosensitivity of neuronal somata o. Lymnaea stagnalis L. In: Salánki, J. (ed.). Heavy Metals in Water Organisms. Akadémiai Kiadó, Budapest, Hungary, pp. 387–400.

    Google Scholar 

  31. 31.

    S.-Rózsa, K., Rubakhin, S. S., Szűcs, A., Stefano, G. B. (1996) Met-enkephalin and morphiceptin modulate a GABA-induced inward current in the CNS o. Lymnaea stagnalis L. Gen. Pharmac. 27, 1337–1345.

    Article  Google Scholar 

  32. 32.

    S.-Rózsa, K., Salánki, J. (1987) Excitable membranes k]object for evaluating the effect of heavy metal pollution. Acta Biol. Hung. 38, 31–45.

    PubMed  Google Scholar 

  33. 33.

    S.-Rózsa, K., Salánki, J., Présing, M. (1988) Use o. Lymnaea stagnalis in monitoring heavy metal pollution. In: Yasuno, M., Whitton, B. A. (eds.). Biological Monitoring of Environmental Pollution. Tokai University Press, Tokyo, Japan, pp. 247–255.

    Google Scholar 

  34. 34.

    Walker, R. J., Brooks, H. L., Holden-Dye, L. (1996) Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113, S3–S33.

    Article  Google Scholar 

  35. 35.

    Weinreich, D., Wonderlin, W. F. (1987) Copper activates a unique inward current in molluscan neurones. J. Physiol. (London) 394, 429–443.

    CAS  Article  Google Scholar 

  36. 36.

    Winlow, W., Benjamin, P. R. (1976) Neuronal mapping of the brain of the pond snail. Lymnaea stag-nalis L. In: Salánki, J. (ed.). Neurobiology of Invetebrates. Gastropoda Brain. Akadémiai Kiadó, Budapest, Hungary, pp. 41–59.

    Google Scholar 

  37. 37.

    Yarowsky, P. J., Carpenter, D. O. (1978) Receptors for gamma-aminobutyric acid (GABA) o. Aplysia neurons. Brain Res. 144, 75–94.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Salánki.

Additional information

Dedicated to Professor József Hámori on the occasion of his 70th birthday.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Molnár, G., Győri, J., Salánki, J. et al. Cadmium Ions Modulate Gaba Induced Currents in Molluscan Neurons. BIOLOGIA FUTURA 53, 105–123 (2002). https://doi.org/10.1556/ABiol.53.2002.1-2.12

Download citation

Keywords

  • GABA
  • Cd2+, Cl-current
  • Lymnaea stagnalis L.