Quantitative Microvascular Changes During Azaserine-Initiated Pancreatic Carcinogenesis

Abstract

Although angiogenesis is considered to be indispensable for continuous tumour growth, only very few studies have been published performing microvessel quantification during tumour progression. We measured the tumour vascularity in different stages of rat pancreatic carcinogenesis induced by azaserine and promoted by raw soya flour-containing pancreatotrophic diet. Besides the tumour samples taken at 6 (atypical acinar cell nodules), 15 (adenomas) and 20 (localised adenocarcinomas) months after carcinogen initiation, we also investigated 3 control groups: tumour-bearing host tissue of azaserine-treated rats and normal tissue of untreated rats kept on standard or pancreatotrophic diet. In contrast with the usual microvessel counting on hot spots, we determined microvascular surface density (SV) and volume density (VV) by electron microscopic morphometry. There was no significant difference in these respect between the control groups. At month 6 after the azaserine induction SV and VV showed slight, nonsignificant decrease as compared to the host control. Both values remained unchanged until the 15th month and increased significantly by the 20th month. These results may indicate comparable growth rate of tumour and new microvessels in the premalignant stages of carcinogenesis while a more intense angiogenesis than tumour growth afterwards.

References

  1. 1.

    American Institute of Nutrition (1977) Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 107, 1340–1348.

    Article  Google Scholar 

  2. 2.

    Barth, P. J., Weingärtner, K., Köhler, H. H., Bittinger, A. (1996) Assessment of the vascularization in prostatic carcinoma: A morphometric investigation. Hum. Pathol. 27, 1306–1310.

    CAS  Article  Google Scholar 

  3. 3.

    Beliën, J. A., Somi, S., de Jong, J. S., van Diest, P. J., Baak, J. P. (1999) Fully automated microvessel counting and hot spot selection by image processing of whole tumour sections in invasive breast cancer. J. Clin. Pathol. 52:3, 184–192.

    Article  Google Scholar 

  4. 4.

    Bochner, B. H., Cote, R. J., Weidner, N., Groshen, S., Chen, S. C, Skinner, D. G., Nichols, P. W. (1995) Angiogenesis in bladder cancer: relationship between microvessel density and tumour prognosis. J. Natl. Cancer Inst. 87:21, 1603–1612.

    CAS  Article  Google Scholar 

  5. 5.

    De Jaeger, K., Merlo, F. M., Kavanagh, M. C., Fyles, A. W., Hedley, D., Hill, R. P. (1998) Heterogeneity of tumour oxygenation: relationship to tumour necrosis, tumour size, and metastasis. Int. J. Radiat. Oncol. Biol. Phys. 42:4, 717–721.

    Article  Google Scholar 

  6. 6.

    Folkman, J. (1985) Tumor angiogenesis. Adv. Cancer Res. 43, 175–203.

    CAS  Article  Google Scholar 

  7. 7.

    Fontanini, G., Lucchi, M., Vignati, S., Mussi, A., Ciardiello, F., De Laurentiis, M., De Placido, S., Basolo, F., Angeletti, C. A., Bevilacqua, G. (1997) Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J. Natl. Cancer Inst. 89:12, 881–886.

    CAS  Article  Google Scholar 

  8. 8.

    Gasparini, G., Weidner, N., Maluta, S., Pozza, F., Boracchi, P., Mezzetti, M., Testolin, A., Bevilacqua, P. (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head and neck squamous-cell carcinoma. Int. J. Cancer 55:5, 739–744.

    CAS  Article  Google Scholar 

  9. 9.

    Hanahan, D., Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    CAS  Article  Google Scholar 

  10. 10.

    Köhler, H. H., Barth, P. J., Siebel, A., Gerharz, E. W., Bittinger, A. (1996) Quantitative assessment of vascular surface density in renal cell carcinomas. Br. J. Urol. 42:4, 717–721.

    Google Scholar 

  11. 11.

    Longnecker, D. S. (1987) The azaserine-induced model of pancreatic carcinogenesis in rats. In: Scarpelli, D. G., Reddy, J. K. and Longnecker, D. S. (eds): Experimental pancreatic carcinogenesis. CRC Press, Boca Raton. pp. 117–132.

    Google Scholar 

  12. 12.

    McGuinness, E. E., Hopwood, D., Wormsley, K. G. (1982) Further studies of the effects of raw soya flour on the rat pancreas. Scand. J. Gastroenterol. 17, 273–277.

    CAS  Article  Google Scholar 

  13. 13.

    Milgross, C. G., Tucker, S. L., Mason, K. A., Hunter, N. R., Peters, L. J., Milas, L. (1997) The effect of tumor size on necrosis and polarographically measured pO2. Acta Oncol. 36:2, 183–189.

    Article  Google Scholar 

  14. 14.

    Porschen, R., Classen, S., Piontek, M., Borchard, F. (1994) Vascularization of carcinomas of the esophagus and its correlation with tumor proliferation. Cancer Res. 54:2, 587–591.

    CAS  PubMed  Google Scholar 

  15. 15.

    Réz, G., Tóth, S., Pálfia, Z. (1999) Cellular autophagic capacity is highly increased in azaserine-induced premalignant atypical acinar nodule cells. Carcinogenesis 20, 1893–1898.

    Article  Google Scholar 

  16. 16.

    Rockwell, S., Knisley, J. P. S. (1997) Hypoxia and angiogenesis in experimental tumor models: Therapeutic implications. In Goldberg, I. D. and Rosen, E. M. (eds): Regulation of angiogenesis. Birkhäuser Verlag, Basel. pp. 335–360.

    Chapter  Google Scholar 

  17. 17.

    Tanigawa, N., Lu, C., Mitsui, T., Miura, S. (1997) Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepathology 26:5, 1216–1223.

    CAS  Google Scholar 

  18. 18.

    Toth, S., Nagy, K., Pálfia, Z., Réz, G. Regulation of cellular autophagic capacity: data from the azaserine-induced pancreatic tumor progression (in preparation)

  19. 19.

    Vermeulen, P. B., Libura, M., Libura, J., O’Neill, P. J., van Dam, P., van Marck, E., van Oosterom, A. T., Dirix, L. Y. (1997) Influence of investigator experience and microscopic field size on microvessel density in node-negative breast carcinoma. Breast Cancer Res. Treat. 42:2, 165–172.

    CAS  Article  Google Scholar 

  20. 20.

    Weibel, E. R. (1969) Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol. 26, 235–302.

    CAS  Article  Google Scholar 

  21. 21.

    Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E. N, Moore, D. H., Meli, S., Gasparini, G. (1992) Tumour angiogenesis: a new significant and independent prognostic indicator in earlystage breast carcinoma. J. Natl. Cancer Inst. 84:24, 1875–1887.

    CAS  Article  Google Scholar 

  22. 22.

    Yager, J. D., Roebuck, B. D., Zurlo, J., Longnecker, D. S., Weselcouch, E. O., Wilpone, S. A. (1981) A single-dose protocol for azaserine initiation of pancreatic carcinogenesis in the rat. Int. J. Cancer 28, 601–606.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Réz.

Additional information

Dedicated to Professor János Kovács on the occasion of his 70th birthday

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagy, K., Pálfia, Z. & Réz, G. Quantitative Microvascular Changes During Azaserine-Initiated Pancreatic Carcinogenesis. BIOLOGIA FUTURA 52, 403–409 (2001). https://doi.org/10.1556/ABiol.52.2001.4.5

Download citation

Keywords

  • Microvessel
  • quantitative
  • tumour progression
  • pancreas
  • rat